Suppr超能文献

纳米催化剂促进变形链球菌生物膜基质降解并增强细菌杀伤作用以抑制体内龋齿。

Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo.

作者信息

Gao Lizeng, Liu Yuan, Kim Dongyeop, Li Yong, Hwang Geelsu, Naha Pratap C, Cormode David P, Koo Hyun

机构信息

Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Biomaterials. 2016 Sep;101:272-84. doi: 10.1016/j.biomaterials.2016.05.051. Epub 2016 Jun 2.

Abstract

Dental biofilms (known as plaque) are notoriously difficult to remove or treat because the bacteria can be enmeshed in a protective extracellular matrix. It can also create highly acidic microenvironments that cause acid-dissolution of enamel-apatite on teeth, leading to the onset of dental caries. Current antimicrobial agents are incapable of disrupting the matrix and thereby fail to efficiently kill the microbes within plaque-biofilms. Here, we report a novel strategy to control plaque-biofilms using catalytic nanoparticles (CAT-NP) with peroxidase-like activity that trigger extracellular matrix degradation and cause bacterial death within acidic niches of caries-causing biofilm. CAT-NP containing biocompatible Fe3O4 were developed to catalyze H2O2 to generate free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill the embedded bacteria with exceptional efficacy (>5-log reduction of cell-viability). Moreover, it displays an additional property of reducing apatite demineralization in acidic conditions. Using 1-min topical daily treatments akin to a clinical situation, we demonstrate that CAT-NP in combination with H2O2 effectively suppress the onset and severity of dental caries while sparing normal tissues in vivo. Our results reveal the potential to exploit nanocatalysts with enzyme-like activity as a potent alternative approach for treatment of a prevalent biofilm-associated oral disease.

摘要

牙菌斑生物膜(即牙菌斑)极难清除或治疗,因为细菌会被困在保护性的细胞外基质中。它还会形成高度酸性的微环境,导致牙齿上的釉质磷灰石发生酸溶解,从而引发龋齿。目前的抗菌剂无法破坏这种基质,因此无法有效杀死牙菌斑生物膜内的微生物。在此,我们报告了一种控制牙菌斑生物膜的新策略,即使用具有过氧化物酶样活性的催化纳米颗粒(CAT-NP),它能引发细胞外基质降解,并在致龋生物膜的酸性微环境中导致细菌死亡。含有生物相容性Fe3O4的CAT-NP被开发出来,以催化H2O2原位生成自由基,同时降解生物膜基质,并以极高的效率(细胞活力降低>5个对数)迅速杀死嵌入其中的细菌。此外,它还具有在酸性条件下减少磷灰石脱矿的额外特性。通过类似于临床情况的每日1分钟局部治疗,我们证明CAT-NP与H2O2联合使用能有效抑制龋齿的发生和严重程度,同时在体内保护正常组织。我们的结果揭示了利用具有酶样活性的纳米催化剂作为治疗一种常见的生物膜相关口腔疾病的有效替代方法的潜力。

相似文献

引用本文的文献

5
Reactive Oxygen Species-Associated Chiral Nanoarchitectures for Bioscience.用于生物科学的活性氧相关手性纳米结构
Small Sci. 2023 Nov 27;4(1):2300123. doi: 10.1002/smsc.202300123. eCollection 2024 Jan.
8
Nanotherapies Based on ROS Regulation in Oral Diseases.基于活性氧调节的口腔疾病纳米疗法
Adv Sci (Weinh). 2025 Mar;12(9):e2409087. doi: 10.1002/advs.202409087. Epub 2025 Jan 30.
10

本文引用的文献

7
Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.用于向细菌生物膜递药的脂质和聚合物纳米粒。
J Control Release. 2014 Sep 28;190:607-23. doi: 10.1016/j.jconrel.2014.03.055. Epub 2014 Apr 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验