Dai Jian, Udupa Jayaram K, Torigian Drew A, Tong Yubing, Nie Pengju, Zhang Jing, Li Ran, Han Shiwei, Liu Tiange
School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei China 066004.
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA USA 19104.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12468. doi: 10.1117/12.2653371. Epub 2023 Apr 10.
Measurement of body composition, including multiple types of adipose tissue, skeletal tissue, and skeletal muscle, on computed tomography (CT) images is practical given the powerful anatomical structure visualization ability of CT, and is useful for clinical and research applications related to health care and underlying pathology. In recent years, deep learning-based methods have contributed significantly to the development of automatic body composition analysis (BCA). However, the unsatisfactory segmentation performance for indistinguishable boundaries of multiple body composition tissues and the need for large-scale datasets for training deep neural networks still need to be addressed. This paper proposes a deep learning-based approach, called Geographic Attention Network (GA-Net), for body composition tissue segmentation on body torso positron emission tomography/computed tomography (PET/CT) images which leverages the body area information. The representation ability of GA-Net is significantly enhanced with the body area information as it strongly correlates with the target body composition tissue. This method achieves precise segmentation performance for multiple body composition tissues, especially for boundaries that are hard to distinguish, and effectively reduces the data requirements for training the network. We evaluate the proposed model on a dataset that includes 50 body torso PET/CT scans for segmenting 4 key bodily tissues - subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle tissue (SMT), and skeleton (Sk). Experiments show that our proposed method increases segmentation accuracy, especially with a limited training dataset, by providing geographic information of target body composition tissues.
鉴于计算机断层扫描(CT)强大的解剖结构可视化能力,在CT图像上测量身体成分,包括多种类型的脂肪组织、骨骼组织和骨骼肌,是切实可行的,并且对于与医疗保健和潜在病理相关的临床和研究应用很有用。近年来,基于深度学习的方法对自动身体成分分析(BCA)的发展做出了重大贡献。然而,对于多种身体成分组织难以区分的边界,分割性能仍不尽人意,并且训练深度神经网络需要大规模数据集的问题仍有待解决。本文提出了一种基于深度学习的方法,称为地理注意力网络(GA-Net),用于在身体躯干正电子发射断层扫描/计算机断层扫描(PET/CT)图像上进行身体成分组织分割,该方法利用了身体区域信息。GA-Net的表示能力因身体区域信息而显著增强,因为它与目标身体成分组织密切相关。该方法对多种身体成分组织实现了精确的分割性能,特别是对于难以区分的边界,并且有效降低了训练网络的数据需求。我们在一个包含50例身体躯干PET/CT扫描的数据集上评估了所提出的模型,用于分割4种关键身体组织——皮下脂肪组织(SAT)、内脏脂肪组织(VAT)、骨骼肌组织(SMT)和骨骼(Sk)。实验表明,我们提出的方法通过提供目标身体成分组织的地理信息提高了分割精度,特别是在训练数据集有限的情况下。