Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, Nottingham, UK.
Metab Eng. 2017 Jan;39:38-48. doi: 10.1016/j.ymben.2016.10.013. Epub 2016 Oct 27.
The efficient fermentative production of solvents (acetone, n-butanol, and ethanol) from a lignocellulosic feedstock using a single process microorganism has yet to be demonstrated. Herein, we developed a consolidated bioprocessing (CBP) based on a twin-clostridial consortium composed of Clostridium cellulovorans and Clostridium beijerinckii capable of producing cellulosic butanol from alkali-extracted, deshelled corn cobs (AECC). To accomplish this a genetic system was developed for C. cellulovorans and used to knock out the genes encoding acetate kinase (Clocel_1892) and lactate dehydrogenase (Clocel_1533), and to overexpress the gene encoding butyrate kinase (Clocel_3674), thereby pulling carbon flux towards butyrate production. In parallel, to enhance ethanol production, the expression of a putative hydrogenase gene (Clocel_2243) was down-regulated using CRISPR interference (CRISPRi). Simultaneously, genes involved in organic acids reassimilation (ctfAB, cbei_3833/3834) and pentose utilization (xylR, cbei_2385 and xylT, cbei_0109) were engineered in C. beijerinckii to enhance solvent production. The engineered twin-clostridia consortium was shown to decompose 83.2g/L of AECC and produce 22.1g/L of solvents (4.25g/L acetone, 11.5g/L butanol and 6.37g/L ethanol). This titer of acetone-butanol-ethanol (ABE) approximates to that achieved from a starchy feedstock. The developed twin-clostridial consortium serves as a promising platform for ABE fermentation from lignocellulose by CBP.
从木质纤维素原料中使用单一过程微生物高效发酵生产溶剂(丙酮、正丁醇和乙醇)尚未得到证明。在此,我们开发了一种基于由纤维梭菌和拜氏梭菌组成的双梭菌联合体的整合生物加工(CBP),能够从碱提取、去壳的玉米芯(AECC)生产纤维素丁醇。为了实现这一目标,开发了一种用于纤维梭菌的遗传系统,并用于敲除编码乙酸激酶(Clocel_1892)和乳酸脱氢酶(Clocel_1533)的基因,并过表达编码丁酸盐激酶(Clocel_3674)的基因,从而将碳通量拉向丁酸盐生产。同时,为了提高乙醇产量,使用 CRISPR 干扰(CRISPRi)下调了假定的氢化酶基因(Clocel_2243)的表达。同时,在拜氏梭菌中对涉及有机酸再吸收(ctfAB、cbei_3833/3834)和戊糖利用(xylR、cbei_2385 和 xylT、cbei_0109)的基因进行了工程改造,以提高溶剂产量。所构建的双梭菌联合体被证明能够分解 83.2g/L 的 AECC 并生产 22.1g/L 的溶剂(4.25g/L 丙酮、11.5g/L 正丁醇和 6.37g/L 乙醇)。该丙酮-丁醇-乙醇(ABE)的浓度与从淀粉原料中获得的浓度相当。所开发的双梭菌联合体是木质纤维素通过 CBP 发酵生产 ABE 的有前途的平台。