Suppr超能文献

Statistical methods and models in the analysis of time to event data.

作者信息

Lee Minjung, Han Junhee

机构信息

Department of Statistics, Kangwon National University, Chuncheon, Gangwon, South Korea.

Department of Statistics and Data Science Convergence Research Center, Hallym University, Chunchen, Gangwon, South Korea.

出版信息

Ann Transl Med. 2020 Feb;8(4):73. doi: 10.21037/atm.2019.12.66.

Abstract
摘要

相似文献

1
Statistical methods and models in the analysis of time to event data.
Ann Transl Med. 2020 Feb;8(4):73. doi: 10.21037/atm.2019.12.66.
2
Comparison of Time-to-First Event and Recurrent-Event Methods in Randomized Clinical Trials.
Circulation. 2018 Aug 7;138(6):570-577. doi: 10.1161/CIRCULATIONAHA.117.033065.
3
Relational event models for longitudinal network data with an application to interhospital patient transfers.
Stat Med. 2017 Jun 30;36(14):2265-2287. doi: 10.1002/sim.7247. Epub 2017 Mar 30.
5
Modelling and exploring human sleep with event history analysis.
J Sleep Res. 1999 Mar;8(1):25-36. doi: 10.1046/j.1365-2869.1999.00133.x.
6
Modelling recurrent events: a tutorial for analysis in epidemiology.
Int J Epidemiol. 2015 Feb;44(1):324-33. doi: 10.1093/ije/dyu222. Epub 2014 Dec 9.
8
The use of time-to-event methods in dental research: a comparison based on five dental journals over a 11-year period.
Community Dent Oral Epidemiol. 2012 Feb;40 Suppl 1:36-42. doi: 10.1111/j.1600-0528.2011.00664.x.
10
Predicting analysis time in event-driven clinical trials with event-reporting lag.
Stat Med. 2012 Apr 30;31(9):801-11. doi: 10.1002/sim.4506. Epub 2012 Feb 17.

引用本文的文献

2
Predicting mortality from AI cardiac volumes mass and coronary calcium on chest computed tomography.
Nat Commun. 2024 Mar 29;15(1):2747. doi: 10.1038/s41467-024-46977-3.
3
Prognostic Significance of Primary Tumor-Infiltrating Lymphocytes in a Contemporary Melanoma Cohort.
Ann Surg Oncol. 2022 Aug;29(8):5207-5216. doi: 10.1245/s10434-022-11478-4. Epub 2022 Mar 17.

本文引用的文献

1
In-depth mining of clinical data: the construction of clinical prediction model with R.
Ann Transl Med. 2019 Dec;7(23):796. doi: 10.21037/atm.2019.08.63.
2
Visualising statistical models using dynamic nomograms.
PLoS One. 2019 Nov 15;14(11):e0225253. doi: 10.1371/journal.pone.0225253. eCollection 2019.
3
Drawing Nomograms with R: applications to categorical outcome and survival data.
Ann Transl Med. 2017 May;5(10):211. doi: 10.21037/atm.2017.04.01.
4
Introduction to the Analysis of Survival Data in the Presence of Competing Risks.
Circulation. 2016 Feb 9;133(6):601-9. doi: 10.1161/CIRCULATIONAHA.115.017719.
5
A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions.
J Clin Epidemiol. 2013 Jun;66(6):648-53. doi: 10.1016/j.jclinepi.2012.09.017. Epub 2013 Feb 14.
6
Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function.
Biometrics. 2005 Mar;61(1):223-9. doi: 10.1111/j.0006-341X.2005.031209.x.
8
Non-parametric inference for cumulative incidence functions in competing risks studies.
Stat Med. 1997 Apr 30;16(8):901-10. doi: 10.1002/(sici)1097-0258(19970430)16:8<901::aid-sim543>3.0.co;2-m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验