Suppr超能文献

利用网络协调技术从大规模人群研究中的自我报告行为估算身体活动量:来自英国生物库的研究结果及其与疾病结局的关联。

Estimating physical activity from self-reported behaviours in large-scale population studies using network harmonisation: findings from UK Biobank and associations with disease outcomes.

机构信息

MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Box 285, Cambridge, CB2 0QQ, UK.

School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Room 301D 3/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong.

出版信息

Int J Behav Nutr Phys Act. 2020 Mar 16;17(1):40. doi: 10.1186/s12966-020-00937-4.

Abstract

BACKGROUND

UK Biobank is a large prospective cohort study containing accelerometer-based physical activity data with strong validity collected from 100,000 participants approximately 5 years after baseline. In contrast, the main cohort has multiple self-reported physical behaviours from > 500,000 participants with longer follow-up time, offering several epidemiological advantages. However, questionnaire methods typically suffer from greater measurement error, and at present there is no tested method for combining these diverse self-reported data to more comprehensively assess the overall dose of physical activity. This study aimed to use the accelerometry sub-cohort to calibrate the self-reported behavioural variables to produce a harmonised estimate of physical activity energy expenditure, and subsequently examine its reliability, validity, and associations with disease outcomes.

METHODS

We calibrated 14 self-reported behavioural variables from the UK Biobank main cohort using the wrist accelerometry sub-cohort (n = 93,425), and used published equations to estimate physical activity energy expenditure (PAEE). For comparison, we estimated physical activity based on the scoring criteria of the International Physical Activity Questionnaire, and by summing variables for occupational and leisure-time physical activity with no calibration. Test-retest reliability was assessed using data from the UK Biobank repeat assessment (n = 18,905) collected a mean of 4.3 years after baseline. Validity was assessed in an independent validation study (n = 98) with estimates based on doubly labelled water (PAEE). In the main UK Biobank cohort (n = 374,352), Cox regression was used to estimate associations between PAEE and fatal and non-fatal outcomes including all-cause, cardiovascular diseases, respiratory diseases, and cancers.

RESULTS

PAEE explained 27% variance in gold-standard PAEE estimates, with no mean bias. However, error was strongly correlated with PAEE (r = -.98; p < 0.001), and PAEE had narrower range than the criterion. Test-retest reliability (Λ = .67) and relative validity (Spearman = .52) of PAEE outperformed two common approaches for processing self-report data with no calibration. Predictive validity was demonstrated by associations with morbidity and mortality, e.g. 14% (95%CI: 11-17%) lower mortality for individuals meeting lower physical activity guidelines.

CONCLUSIONS

The PAEE variable has good reliability and validity for ranking individuals, with no mean bias but correlated error at individual-level. PAEE outperformed uncalibrated estimates and showed stronger inverse associations with disease outcomes.

摘要

背景

英国生物库是一项大型前瞻性队列研究,包含大约在基线后 5 年从 100,000 名参与者中收集的基于加速度计的具有较强有效性的身体活动数据。相比之下,主要队列拥有来自超过 500,000 名参与者的多项自我报告的身体行为,随访时间更长,提供了一些流行病学优势。然而,问卷调查方法通常存在更大的测量误差,目前尚无经过测试的方法可将这些不同的自我报告数据结合起来,以更全面地评估身体活动的总体剂量。本研究旨在使用加速度计子队列校准自我报告的行为变量,以产生身体活动能量消耗的协调估计值,随后检查其可靠性、有效性以及与疾病结果的关联。

方法

我们使用英国生物库的腕部加速度计子队列(n=93,425)校准了主要队列中的 14 项自我报告的行为变量,并使用已发表的方程来估计身体活动能量消耗(PAEE)。为了比较,我们根据国际体力活动问卷的评分标准来估计体力活动,并且通过不进行校准而对职业和休闲时间体力活动的变量进行求和。使用英国生物库重复评估(n=18,905)的数据评估了测试-重测的可靠性,该数据是在基线后平均 4.3 年收集的。在一项独立的验证研究(n=98)中,我们使用基于双标记水(PAEE)的估计值评估了有效性。在主要的英国生物库队列(n=374,352)中,使用 Cox 回归来估计 PAEE 与全因、心血管疾病、呼吸疾病和癌症等致命和非致命结果之间的关联。

结果

PAEE 解释了黄金标准 PAEE 估计值的 27%方差,且没有平均偏差。然而,误差与 PAEE 高度相关(r=-.98;p<0.001),并且 PAEE 的范围比标准值窄。PAEE 的测试-重测可靠性(Λ=0.67)和相对有效性(Spearman=0.52)优于不进行校准的两种常见自我报告数据处理方法。通过与发病率和死亡率的关联证明了预测有效性,例如,符合较低体力活动指南的个体死亡率降低 14%(95%CI:11-17%)。

结论

PAEE 变量具有良好的可靠性和有效性,用于个体排序,没有平均偏差,但个体水平的误差存在相关性。PAEE 优于未经校准的估计值,并且与疾病结果呈更强的负相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df09/7074990/346017d71e2c/12966_2020_937_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验