Wolf Dane M, Segawa Mayuko, Shirihai Orian S, Liesa Marc
Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; Graduate Program in Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, United States.
Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.
Methods Cell Biol. 2020;155:545-555. doi: 10.1016/bs.mcb.2019.12.006. Epub 2020 Mar 4.
The emergence of diffraction-unlimited live-cell imaging technologies has enabled the examination of mitochondrial form and function in unprecedented detail. We recently developed an approach for visualizing the inner mitochondrial membrane and determined that cristae membranes possess distinct mitochondrial membrane potentials, representing unique bioenergetic subdomains within the same organelle. Here, we outline a methodology for resolving cristae and inner boundary membranes using the LSM880 with Airyscan. Furthermore, we demonstrate how to analyze TMRE fluorescence intensity using the Nernst equation to calculate membrane potentials of individual cristae. Altogether, using these new techniques to study the electrochemical properties of the cristae can help to gain deeper insight into the still elusive nature of the mitochondrion.
衍射极限的活细胞成像技术的出现,使得人们能够以前所未有的细节研究线粒体的形态和功能。我们最近开发了一种可视化线粒体内膜的方法,并确定嵴膜具有独特的线粒体膜电位,代表了同一细胞器内独特的生物能量亚结构域。在这里,我们概述了一种使用配备Airyscan的LSM880解析嵴和内膜边界的方法。此外,我们展示了如何使用能斯特方程分析TMRE荧光强度,以计算单个嵴的膜电位。总之,使用这些新技术研究嵴的电化学性质有助于更深入地了解仍然难以捉摸的线粒体本质。