Kowaltowski Alicia J, Abdulkader Fernando
Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
Departmento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
Biophys J. 2024 Dec 17;123(24):4150-4157. doi: 10.1016/j.bpj.2024.03.011. Epub 2024 Mar 7.
The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.
近年来,由于发现线粒体在诸如代谢紊乱、神经退行性疾病、心血管疾病、炎症和癌症等病理状况的发生和发展中具有广泛作用,关于线粒体的科学文献显著增加。研究人员广泛探索了线粒体特性和功能在不同模型中是如何被改变的,通常使用荧光线粒体内膜电位(ΔΨm)探针来评估线粒体功能方面,如质子动力和氧化磷酸化。本综述概述了测量ΔpH和ΔΨm的现有技术,强调了它们的优点、局限性和应用。它讨论了ΔΨm探针的缺点,特别是在未经校准使用时,以及为了特定科学目标应采用替代方法取代ΔΨm测量的情况。通过理解质子动力测量和荧光ΔΨm探针的正确应用及局限性,采用更精确、无假象、灵敏和定量的线粒体功能测量方法,对线粒体及其广泛生物学作用的研究将取得显著进展。