Suppr超能文献

如何以及何时测量线粒体内膜电位。

How and when to measure mitochondrial inner membrane potentials.

作者信息

Kowaltowski Alicia J, Abdulkader Fernando

机构信息

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.

Departmento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.

出版信息

Biophys J. 2024 Dec 17;123(24):4150-4157. doi: 10.1016/j.bpj.2024.03.011. Epub 2024 Mar 7.

Abstract

The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.

摘要

近年来,由于发现线粒体在诸如代谢紊乱、神经退行性疾病、心血管疾病、炎症和癌症等病理状况的发生和发展中具有广泛作用,关于线粒体的科学文献显著增加。研究人员广泛探索了线粒体特性和功能在不同模型中是如何被改变的,通常使用荧光线粒体内膜电位(ΔΨm)探针来评估线粒体功能方面,如质子动力和氧化磷酸化。本综述概述了测量ΔpH和ΔΨm的现有技术,强调了它们的优点、局限性和应用。它讨论了ΔΨm探针的缺点,特别是在未经校准使用时,以及为了特定科学目标应采用替代方法取代ΔΨm测量的情况。通过理解质子动力测量和荧光ΔΨm探针的正确应用及局限性,采用更精确、无假象、灵敏和定量的线粒体功能测量方法,对线粒体及其广泛生物学作用的研究将取得显著进展。

相似文献

引用本文的文献

3
Improvement on mitochondrial energy metabolism of polysaccharide.
Front Pharmacol. 2025 May 30;16:1545356. doi: 10.3389/fphar.2025.1545356. eCollection 2025.
4
KLRG1 identifies regulatory T cells with mitochondrial alterations that accumulate with aging.
Nat Aging. 2025 May;5(5):799-815. doi: 10.1038/s43587-025-00855-9. Epub 2025 Apr 30.
7
Proton reactions: From basic science to biomedical applications.
Biophys J. 2024 Dec 17;123(24):E1-E5. doi: 10.1016/j.bpj.2024.11.013. Epub 2024 Dec 6.
8
Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level.
Nat Commun. 2024 Nov 30;15(1):10424. doi: 10.1038/s41467-024-54516-3.
9
Understanding mitochondrial potassium channels: 33 years after discovery.
Acta Biochim Pol. 2024 May 28;71:13126. doi: 10.3389/abp.2024.13126. eCollection 2024.

本文引用的文献

1
Goldilocks calcium concentrations and the regulation of oxidative phosphorylation: Too much, too little, or just right.
J Biol Chem. 2023 Mar;299(3):102904. doi: 10.1016/j.jbc.2023.102904. Epub 2023 Jan 13.
2
Regulation of kidney mitochondrial function by caloric restriction.
Am J Physiol Renal Physiol. 2022 Jul 1;323(1):F92-F106. doi: 10.1152/ajprenal.00461.2021. Epub 2022 May 2.
3
Mitochondrial F F ATP synthase determines the local proton motive force at cristae rims.
EMBO Rep. 2021 Dec 6;22(12):e52727. doi: 10.15252/embr.202152727. Epub 2021 Sep 30.
4
Forces, fluxes, and fuels: tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites.
Am J Physiol Cell Physiol. 2021 Jan 1;320(1):C80-C91. doi: 10.1152/ajpcell.00235.2020. Epub 2020 Nov 4.
5
A minireview of viscosity-sensitive fluorescent probes: design and biological applications.
J Mater Chem B. 2020 Nov 4;8(42):9642-9651. doi: 10.1039/d0tb01146k.
6
7
Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent.
EMBO J. 2019 Nov 15;38(22):e101056. doi: 10.15252/embj.2018101056. Epub 2019 Oct 14.
8
Quantitative in vivo mapping of myocardial mitochondrial membrane potential.
PLoS One. 2018 Jan 16;13(1):e0190968. doi: 10.1371/journal.pone.0190968. eCollection 2018.
9
Ca-associated triphasic pH changes in mitochondria during brown adipocyte activation.
Mol Metab. 2017 May 31;6(8):797-808. doi: 10.1016/j.molmet.2017.05.013. eCollection 2017 Aug.
10
Mitochondrial membrane potential.
Anal Biochem. 2018 Jul 1;552:50-59. doi: 10.1016/j.ab.2017.07.009. Epub 2017 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验