CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
Animal Platforms, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal.
Biol Open. 2020 May 3;9(5):bio048629. doi: 10.1242/bio.048629.
Mitochondria adapt to cellular needs by changes in morphology through fusion and fission events, referred to as mitochondrial dynamics. Mitochondrial function and morphology are intimately connected and the dysregulation of mitochondrial dynamics is linked to several human diseases. In this work, we investigated the role of mitochondrial dynamics in wound healing in the embryonic epidermis. Mutants for mitochondrial fusion and fission proteins fail to close their wounds, indicating that the regulation of mitochondrial dynamics is required for wound healing. By live-imaging, we found that loss of function of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) compromises the increase of cytosolic and mitochondrial calcium upon wounding and leads to reduced reactive oxygen species (ROS) production and F-actin defects at the wound edge, culminating in wound healing impairment. Our results highlight a new role for mitochondrial dynamics in the regulation of calcium, ROS and F-actin during epithelial repair.
线粒体通过融合和裂变事件改变形态来适应细胞的需求,这被称为线粒体动力学。线粒体的功能和形态是密切相关的,线粒体动力学的失调与几种人类疾病有关。在这项工作中,我们研究了线粒体动力学在胚胎表皮伤口愈合中的作用。线粒体融合和裂变蛋白的突变体不能闭合伤口,这表明线粒体动力学的调节是伤口愈合所必需的。通过活细胞成像,我们发现线粒体裂变蛋白 Dynamin-related protein 1(Drp1)的功能丧失会损害伤口后细胞质和线粒体钙的增加,并导致活性氧(ROS)产生减少和伤口边缘处的 F-肌动蛋白缺陷,最终导致伤口愈合受损。我们的结果强调了线粒体动力学在调节上皮修复过程中的钙、ROS 和 F-肌动蛋白中的新作用。