Zhou Peng, Li Zhi, Magnusson Erika, Gomez Cano Fabio, Crisp Peter A, Noshay Jaclyn M, Grotewold Erich, Hirsch Candice N, Briggs Steven P, Springer Nathan M
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108.
Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108.
Plant Cell. 2020 May;32(5):1377-1396. doi: 10.1105/tpc.20.00080. Epub 2020 Mar 17.
The regulation of gene expression is central to many biological processes. Gene regulatory networks (GRNs) link transcription factors (TFs) to their target genes and represent maps of potential transcriptional regulation. Here, we analyzed a large number of publically available maize () transcriptome data sets including >6000 RNA sequencing samples to generate 45 coexpression-based GRNs that represent potential regulatory relationships between TFs and other genes in different populations of samples (cross-tissue, cross-genotype, and tissue-and-genotype samples). While these networks are all enriched for biologically relevant interactions, different networks capture distinct TF-target associations and biological processes. By examining the power of our coexpression-based GRNs to accurately predict covarying TF-target relationships in natural variation data sets, we found that presence/absence changes rather than quantitative changes in TF gene expression are more likely associated with changes in target gene expression. Integrating information from our TF-target predictions and previous expression quantitative trait loci (eQTL) mapping results provided support for 68 TFs underlying 74 previously identified -eQTL hotspots spanning a variety of metabolic pathways. This study highlights the utility of developing multiple GRNs within a species to detect putative regulators of important plant pathways and provides potential targets for breeding or biotechnological applications.
基因表达调控是许多生物学过程的核心。基因调控网络(GRNs)将转录因子(TFs)与其靶基因联系起来,并代表潜在转录调控的图谱。在此,我们分析了大量公开可用的玉米转录组数据集,包括>6000个RNA测序样本,以生成45个基于共表达的GRNs,这些GRNs代表了不同样本群体(跨组织、跨基因型以及组织和基因型样本)中TFs与其他基因之间的潜在调控关系。虽然这些网络都富集了生物学相关的相互作用,但不同的网络捕获了不同的TF-靶标关联和生物学过程。通过检验我们基于共表达的GRNs在自然变异数据集中准确预测共变TF-靶标关系的能力,我们发现TF基因表达的存在/缺失变化而非定量变化更有可能与靶基因表达的变化相关。整合来自我们的TF-靶标预测信息和先前的表达数量性状位点(eQTL)定位结果,为74个先前确定的跨越多种代谢途径的-eQTL热点背后的68个TFs提供了支持。这项研究突出了在一个物种内开发多个GRNs以检测重要植物途径的假定调节因子的实用性,并为育种或生物技术应用提供了潜在靶点。