Suppr超能文献

基于对比增强计算机断层扫描的放射组学方法用于术前鉴别胰腺囊性肿瘤亚型:一项可行性研究

A Contrast-Enhanced Computed Tomography Based Radiomics Approach for Preoperative Differentiation of Pancreatic Cystic Neoplasm Subtypes: A Feasibility Study.

作者信息

Shen Xiaoyong, Yang Fan, Yang Pengfei, Yang Modan, Xu Lei, Zhuo Jianyong, Wang Jianguo, Lu Di, Liu Zhikun, Zheng Shu-Sen, Niu Tianye, Xu Xiao

机构信息

Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Front Oncol. 2020 Feb 28;10:248. doi: 10.3389/fonc.2020.00248. eCollection 2020.

Abstract

Serous cystadenoma (SCA), mucinous cystadenoma (MCN), and intraductal papillary mucinous neoplasm (IPMN) are three subtypes of pancreatic cystic neoplasm (PCN). Due to the potential of malignant-transforming, patients with MCN and IPMN require radical surgery while patients with SCA need periodic surveillance. However, accurate pre-surgery diagnosis between SCA, MCN, and IPMN remains challenging in the clinic. This study enrolled 164 patients including 76 with SCA, 40 with MCN and 48 with IPMN. Patients were randomly split into a training cohort ( = 115) and validation cohort ( = 41). We performed statistical analysis and Boruta method to screen significantly distinct clinical factors and radiomics features extracted on pre-surgery contrast-enhanced computed tomography (CECT) images among three subtypes. Three reliable machine-learning algorithms, support vector machine (SVM), random forest (RF) and artificial neural network (ANN), were utilized to construct classifiers based on important radiomics features and clinical parameters. Precision, recall, and F1-score were calculated to assess the performance of the constructed classifiers. Nine of 547 radiomics features and eight clinical factors showed a significant difference among SCA, MCN, and IPMN. Five radiomics features (Histogram_Entropy, Histogram_Skeweness, LLL_GLSZM_GLV, Histogram_Uniformity, HHL_Histogram_Kurtosis), and four clinical factors, including serum carbohydrate antigen 19-9, sex, age, and serum carcinoembryonic antigen, were identified important by Boruta method. The SVM classifier achieved an overall accuracy of 73.04% in training cohort and 71.43% in validation cohort, respectively. The RF classifier achieved overall accuracy of 84.35 and 79.59%, respectively. The constructed ANN model showed an overall accuracy of 77.39% in the training dataset and 71.43% in the validation dataset. All the three classifiers showed high F1 score for differentiation among the three subtypes. Our study proved the feasibility and translational value of CECT-based radiomics classifiers for differentiation among SCA, MCN, and IPMN.

摘要

浆液性囊腺瘤(SCA)、黏液性囊腺瘤(MCN)和导管内乳头状黏液性肿瘤(IPMN)是胰腺囊性肿瘤(PCN)的三种亚型。由于存在恶变的可能性,MCN和IPMN患者需要进行根治性手术,而SCA患者需要定期监测。然而,在临床上,准确术前诊断SCA、MCN和IPMN仍然具有挑战性。本研究纳入了164例患者,其中76例为SCA,40例为MCN,48例为IPMN。患者被随机分为训练队列(n = 115)和验证队列(n = 41)。我们进行了统计分析和Boruta方法,以筛选三种亚型在术前增强CT(CECT)图像上提取的显著不同的临床因素和影像组学特征。利用三种可靠的机器学习算法,支持向量机(SVM)、随机森林(RF)和人工神经网络(ANN),基于重要的影像组学特征和临床参数构建分类器。计算精度、召回率和F1分数以评估构建的分类器的性能。547个影像组学特征中的9个和8个临床因素在SCA、MCN和IPMN之间存在显著差异。通过Boruta方法确定了5个影像组学特征(直方图熵、直方图偏度、LLL_GLSZM_GLV、直方图均匀性、HHL_直方图峰度)和4个临床因素,包括血清糖类抗原19-9、性别(sex)、年龄和血清癌胚抗原,为重要因素。SVM分类器在训练队列中的总体准确率分别为73.04%,在验证队列中为71.43%。RF分类器的总体准确率分别为84.35%和79.59%。构建的ANN模型在训练数据集和验证数据集中的总体准确率分别为77.39%和71.43%。所有这三种分类器在区分三种亚型方面均显示出较高的F1分数。我们的研究证明了基于CECT的影像组学分类器在区分SCA、MCN和IPMN方面的可行性和转化价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07d/7058789/b33ff215bc32/fonc-10-00248-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验