Department of Biochemistry, University of Washington, Seattle, WA 98195.
Institute for Protein Design, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7208-7215. doi: 10.1073/pnas.1914808117. Epub 2020 Mar 18.
The plasticity of naturally occurring protein structures, which can change shape considerably in response to changes in environmental conditions, is critical to biological function. While computational methods have been used for de novo design of proteins that fold to a single state with a deep free-energy minimum [P.-S. Huang, S. E. Boyken, D. Baker, 537, 320-327 (2016)], and to reengineer natural proteins to alter their dynamics [J. A. Davey, A. M. Damry, N. K. Goto, R. A. Chica, 13, 1280-1285 (2017)] or fold [P. A. Alexander, Y. He, Y. Chen, J. Orban, P. N. Bryan, 106, 21149-21154 (2009)], the de novo design of closely related sequences which adopt well-defined but structurally divergent structures remains an outstanding challenge. We designed closely related sequences (over 94% identity) that can adopt two very different homotrimeric helical bundle conformations-one short (∼66 Å height) and the other long (∼100 Å height)-reminiscent of the conformational transition of viral fusion proteins. Crystallographic and NMR spectroscopic characterization shows that both the short- and long-state sequences fold as designed. We sought to design bistable sequences for which both states are accessible, and obtained a single designed protein sequence that populates either the short state or the long state depending on the measurement conditions. The design of sequences which are poised to adopt two very different conformations sets the stage for creating large-scale conformational switches between structurally divergent forms.
天然蛋白质结构的可塑性至关重要,它可以根据环境条件的变化而发生显著的形状变化,这对于生物功能至关重要。虽然计算方法已被用于从头设计能够折叠到具有深自由能最小的单一状态的蛋白质[P.-S. Huang、S. E. Boyken、D. Baker,537,320-327(2016)],并用于重新设计天然蛋白质以改变它们的动力学[J. A. Davey、A. M. Damry、N. K. Goto、R. A. Chica,13,1280-1285(2017)]或折叠[P. A. Alexander、Y. He、Y. Chen、J. Orban、P. N. Bryan,106,21149-21154(2009)],但设计采用明确定义但结构上不同的结构的密切相关序列仍然是一个突出的挑战。我们设计了密切相关的序列(超过 94%的同一性),它们可以采用两种非常不同的同源三聚体螺旋束构象——一种短(约 66 Å 高),另一种长(约 100 Å 高)——类似于病毒融合蛋白的构象转变。晶体学和 NMR 光谱学表征表明,短态和长态序列都按设计折叠。我们试图设计出两种状态都可访问的双稳态序列,并获得了一个单一的设计蛋白序列,该序列根据测量条件可以填充短态或长态。设计能够采用两种非常不同构象的序列为在结构上差异很大的形式之间创建大规模构象开关奠定了基础。