Hwang Jeongwoon, Zhang Chenxi, Kim Yong-Sung, Wallace Robert M, Cho Kyeongjae
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas, 75080, USA.
Department of Physics Education, Chonnam National University, Gwangju, 61186, Korea.
Sci Rep. 2020 Mar 18;10(1):4938. doi: 10.1038/s41598-020-61675-y.
Substitutional doping in 2D semiconductor MoS was investigated by charge transition level (CTL) calculations for Nitrogen group (N, P, As, Sb) and Halogen group (F, Cl, Br, I) dopants at the S site of monolayer MoS. Both n-type and p-type dopant levels are calculated to be deep mid-gap states (~1 eV from band edges) from DFT total energy-based CTL and separate DFT + GW calculations. The deep dopant levels result from the giant renormalization of hydrogen-like defect states by reduced dielectric screening in ultrathin 2D films. Theoretical analysis based on Keldysh formulation provides a consistent impurity binding energy of ~1 eV for dielectric thin films. These findings of intrinsic deep impurity levels in 2D semiconductors MoS may be applicable to diverse novel emerging device applications.
通过电荷转移能级(CTL)计算,研究了二维半导体二硫化钼(MoS)中,氮族(N、P、As、Sb)和卤族(F、Cl、Br、I)掺杂剂在单层MoS的硫(S)位点上的替代掺杂情况。基于密度泛函理论(DFT)总能量的CTL计算以及单独的DFT+GW计算表明,n型和p型掺杂能级均被计算为深的中间能隙态(距带边约1 eV)。深掺杂能级是由超薄二维薄膜中降低的介电屏蔽对类氢缺陷态的巨大重整化导致的。基于凯尔迪什公式的理论分析为介电薄膜提供了约1 eV的一致杂质结合能。二维半导体MoS中本征深杂质能级的这些发现可能适用于各种新兴的新型器件应用。