IEEE Trans Biomed Eng. 2020 Jun;67(6):1664-1671. doi: 10.1109/TBME.2019.2942572. Epub 2019 Sep 19.
Assessing the effectiveness of microfluidic device structures for enabling electrokinetic or acoustic trapping requires imaging of model particles within each device under the requisite force fields. To avoid the need for extensive microscopy, the use of valuable biological samples, and reliance on a trained operator to assess efficacy of trapping, we explore electrical means to identify device geometry variations that are responsible for the poor trapping.
Using the example of AC electrokinetic trapping over an insulated channel in a contact-less dielectrophoresis mode, we present an on-chip method to acquire impedance spectra on the microfluidic device for quantifying the parasitic voltage drops.
Based on the parasitic voltage drops, device geometries can be designed to maximize fraction of the applied voltage that is available for dielectrophoretic manipulation and the measured on-chip impedance can rapidly inform downstream decisions on particle manipulation.
评估微流控器件结构在实现电动或声捕获方面的有效性,需要在所需的力场下对每个器件中的模型粒子进行成像。为了避免需要广泛的显微镜检查、宝贵的生物样本的使用以及依赖经过培训的操作员来评估捕获效果,我们探索了电手段来识别负责捕获效果差的器件几何形状变化。
使用在无接触式介电泳模式下在绝缘通道上的交流电动捕获的示例,我们提出了一种在微流控器件上获取阻抗谱的片上方法,以量化寄生电压降。
基于寄生电压降,可以设计器件几何形状,以最大化可用于介电泳操作的施加电压的分数,并且测量的片上阻抗可以快速告知下游关于粒子操作的决策。