Suppr超能文献

观察性生存研究中的删失稳健估计:评估血管通路类型对终末期肾病患者血管通路通畅率的相对有效性。

Censoring-robust estimation in observational survival studies: Assessing the relative effectiveness of vascular access type on patency among end-stage renal disease patients.

作者信息

Nguyen Vinh Q, Gillen Daniel L

机构信息

Department of Statistics, University of California, Irvine 92697-1250, USA.

出版信息

Stat Biosci. 2017 Dec;9(2):406-430. doi: 10.1007/s12561-016-9162-z. Epub 2016 Aug 18.

Abstract

The proportional hazards model is commonly used in observational studies to estimate and test a predefined measure of association between a variable of interest and the time to some event . For example, it has been used to investigate the effect of vascular access type in patency among end-stage renal disease patients (Gibson et al., J Vasc Surg 34:694-700, 2001). The measure of association comes in the form of an adjusted hazard ratio as additional covariates are often included in the model to adjust for potential confounding. Despite its flexibility, the model comes with a rather strong assumption that is often not met in practice: a time-invariant effect of the covariates on the hazard function for . When the proportional hazards assumption is violated, it is well known in the literature that the maximum partial likelihood estimator is consistent for a parameter that is dependent on the observed censoring distribution, leading to a quantity that is difficult to interpret and replicate as censoring is usually not of scientific concern and generally varies from study to study. Solutions have been proposed to remove the censoring dependence in the two-sample setting, but none has addressed the setting of multiple, possibly continuous, covariates. We propose a survival tree approach that identifies group-specific censoring based on adjustment covariates in the primary survival model that fits naturally into the theory developed for the two-sample case. With this methodology, we propose to draw inference on a predefined marginal adjusted hazard ratio that is valid and independent of censoring regardless of whether model assumptions hold.

摘要

比例风险模型常用于观察性研究,以估计和检验感兴趣的变量与某事件发生时间之间预先定义的关联度量。例如,它已被用于研究血管通路类型对终末期肾病患者血管通畅性的影响(Gibson等人,《血管外科杂志》34:694 - 700,2001年)。关联度量以调整后的风险比形式呈现,因为模型中通常会纳入其他协变量以调整潜在的混杂因素。尽管该模型具有灵活性,但它有一个在实际中常常无法满足的相当强的假设:协变量对风险函数的时间不变效应。当比例风险假设被违反时,文献中众所周知,最大偏似然估计器对于一个依赖于观察到的删失分布的参数是一致的,这导致一个难以解释和重复的量,因为删失通常不是科学关注的重点,并且通常因研究而异。已经有人提出在两样本设置中消除对删失的依赖性的解决方案,但没有一个解决了多个可能连续的协变量的设置问题。我们提出一种生存树方法,该方法基于主要生存模型中的调整协变量识别特定组的删失,这自然地融入了为两样本情况发展的理论。使用这种方法,我们建议对一个预先定义的边际调整风险比进行推断,无论模型假设是否成立,该风险比都是有效的且与删失无关。

相似文献

5
Estimation of treatment effects based on possibly misspecified Cox regression.基于可能错误设定的Cox回归的治疗效果估计。
Lifetime Data Anal. 2012 Oct;18(4):408-33. doi: 10.1007/s10985-012-9222-8. Epub 2012 Apr 21.
9
Robust inference in discrete hazard models for randomized clinical trials.随机临床试验离散风险模型中的稳健推断。
Lifetime Data Anal. 2012 Oct;18(4):446-69. doi: 10.1007/s10985-012-9224-6. Epub 2012 Jul 19.

引用本文的文献

2
Statistical Methods in Organ Failure and Transplantation.器官衰竭与移植中的统计方法
Stat Biosci. 2017 Dec;9(2):317-319. doi: 10.1007/s12561-017-9207-y. Epub 2017 Nov 27.

本文引用的文献

1
Robust inference in discrete hazard models for randomized clinical trials.随机临床试验离散风险模型中的稳健推断。
Lifetime Data Anal. 2012 Oct;18(4):446-69. doi: 10.1007/s10985-012-9224-6. Epub 2012 Jul 19.
8
Hemodialysis vascular access survival: upper-arm native arteriovenous fistula.
Am J Kidney Dis. 2002 Jan;39(1):92-101. doi: 10.1053/ajkd.2002.29886.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验