Suppr超能文献

匹配对队列研究中比例风险模型的风险比估计方法

On hazard ratio estimators by proportional hazards models in matched-pair cohort studies.

作者信息

Shinozaki Tomohiro, Mansournia Mohammad Ali, Matsuyama Yutaka

机构信息

Department of Biostatistics, School of Public Health, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan.

Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran.

出版信息

Emerg Themes Epidemiol. 2017 Jun 5;14:6. doi: 10.1186/s12982-017-0060-8. eCollection 2017.

Abstract

BACKGROUND

In matched-pair cohort studies with censored events, the hazard ratio (HR) may be of main interest. However, it is lesser known in epidemiologic literature that the partial maximum likelihood estimator of a common HR conditional on matched pairs is written in a simple form, namely, the ratio of the numbers of two pair-types. Moreover, because HR is a noncollapsible measure and its constancy across matched pairs is a restrictive assumption, marginal HR as "average" HR may be targeted more than conditional HR in analysis.

METHODS

Based on its simple expression, we provided an alternative interpretation of the common HR estimator as the odds of the matched-pair analog of C-statistic for censored time-to-event data. Through simulations assuming proportional hazards within matched pairs, the influence of various censoring patterns on the marginal and common HR estimators of unstratified and stratified proportional hazards models, respectively, was evaluated. The methods were applied to a real propensity-score matched dataset from the Rotterdam tumor bank of primary breast cancer.

RESULTS

We showed that stratified models unbiasedly estimated a common HR under the proportional hazards within matched pairs. However, the marginal HR estimator with robust variance estimator lacks interpretation as an "average" marginal HR even if censoring is unconditionally independent to event, unless no censoring occurs or no exposure effect is present. Furthermore, the exposure-dependent censoring biased the marginal HR estimator away from both conditional HR and an "average" marginal HR irrespective of whether exposure effect is present. From the matched Rotterdam dataset, we estimated HR for relapse-free survival of absence versus presence of chemotherapy; estimates (95% confidence interval) were 1.47 (1.18-1.83) for common HR and 1.33 (1.13-1.57) for marginal HR.

CONCLUSION

The simple expression of the common HR estimator would be a useful summary of exposure effect, which is less sensitive to censoring patterns than the marginal HR estimator. The common and the marginal HR estimators, both relying on distinct assumptions and interpretations, are complementary alternatives for each other.

摘要

背景

在存在删失事件的配对队列研究中,风险比(HR)可能是主要关注的指标。然而,在流行病学文献中鲜为人知的是,基于配对条件下的共同HR的部分最大似然估计量具有一种简单的形式,即两种配对类型数量的比值。此外,由于HR是一种不可压缩的度量,并且其在配对间的恒定性是一个严格的假设,在分析中,作为“平均”HR的边际HR可能比条件HR更受关注。

方法

基于其简单表达式,我们对共同HR估计量给出了另一种解释,即将其视为删失事件发生时间数据的C统计量的配对类似物的比值。通过在配对内假设风险成比例的模拟,分别评估了各种删失模式对未分层和分层比例风险模型的边际和共同HR估计量的影响。这些方法应用于来自鹿特丹肿瘤库的原发性乳腺癌的真实倾向得分匹配数据集。

结果

我们表明,在配对内风险成比例的情况下,分层模型无偏地估计了共同HR。然而,具有稳健方差估计量的边际HR估计量即使在删失与事件无条件独立时,也缺乏作为“平均”边际HR的解释,除非没有删失发生或不存在暴露效应。此外,无论是否存在暴露效应,与暴露相关的删失都会使边际HR估计量偏离条件HR和“平均”边际HR。从匹配的鹿特丹数据集中,我们估计了有无化疗情况下无复发生存的HR;共同HR的估计值(95%置信区间)为1.47(1.18 - 1.83),边际HR的估计值为1.33(1.13 - 1.57)。

结论

共同HR估计量的简单表达式将是暴露效应的一个有用总结,它比边际HR估计量对删失模式更不敏感。共同HR估计量和边际HR估计量都依赖于不同的假设和解释,它们是相互补充的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efd/5460539/f18e5382198b/12982_2017_60_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验