Che Ping, Baumgaertl Korbinian, Kúkol'ová Anna, Dubs Carsten, Grundler Dirk
Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Laboratory of Semiconductor Materials, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Nat Commun. 2020 Mar 19;11(1):1445. doi: 10.1038/s41467-020-15265-1.
Exchange magnons are essential for unprecedented miniaturization of GHz electronics and magnon-based logic. However, their efficient excitation via microwave fields is still a challenge. Current methods including nanocontacts and grating couplers require advanced nanofabrication tools which limit the broad usage. Here, we report efficient emission and detection of exchange magnons using micron-sized coplanar waveguides (CPWs) into which we integrated ferromagnetic (m) layers. We excited magnons in a broad frequency band with wavelengths λ down to 100 nm propagating over macroscopic distances in thin yttrium iron garnet. Applying time- and spatially resolved Brillouin light scattering as well as micromagnetic simulations we evidence a significant wavelength conversion process near mCPWs via tunable inhomogeneous fields. We show how optimized mCPWs can form microwave-to-magnon transducers providing phase-coherent exchange magnons with λ of 37 nm. Without any nanofabrication they allow one to harvest the advantages of nanomagnonics by antenna designs exploited in conventional microwave circuits.
交换磁振子对于实现千兆赫兹电子器件和基于磁振子的逻辑前所未有的小型化至关重要。然而,通过微波场对其进行有效激发仍然是一个挑战。包括纳米接触和光栅耦合器在内的当前方法需要先进的纳米制造工具,这限制了其广泛应用。在此,我们报告了使用微米级共面波导(CPW)实现交换磁振子的高效发射和检测,我们将铁磁(m)层集成到了该波导中。我们在宽频带内激发磁振子,其波长λ低至100 nm,在钇铁石榴石薄膜中能在宏观距离上传播。通过应用时间和空间分辨布里渊光散射以及微磁模拟,我们证明了在mCPW附近通过可调谐非均匀场存在显著的波长转换过程。我们展示了优化后的mCPW如何形成微波到磁振子的换能器,提供波长为37 nm的相位相干交换磁振子。无需任何纳米制造,它们就能通过传统微波电路中采用的天线设计让人们收获纳米磁学的优势。