Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Small. 2020 Apr;16(17):e2000462. doi: 10.1002/smll.202000462. Epub 2020 Mar 20.
Nanoacoustic fields are a promising method for particle actuation at the nanoscale, though THz frequencies are typically required to create nanoscale wavelengths. In this work, the generation of robust nanoscale force gradients is demonstrated using MHz driving frequencies via acoustic-structure interactions. A structured elastic layer at the interface between a microfluidic channel and a traveling surface acoustic wave (SAW) device results in submicron acoustic traps, each of which can trap individual submicron particles. The acoustically driven deformation of nanocavities gives rise to time-averaged acoustic fields which direct suspended particles toward, and trap them within, the nanocavities. The use of SAWs permits massively multiplexed particle manipulation with deterministic patterning at the single-particle level. In this work, 300 nm diameter particles are acoustically trapped in 500 nm diameter cavities using traveling SAWs with wavelengths in the range of 20-80 µm with one particle per cavity. On-demand generation of nanoscale acoustic force gradients has wide applications in nanoparticle manipulation, including bioparticle enrichment and enhanced catalytic reactions for industrial applications.
纳米声场是在纳米尺度上驱动粒子的一种很有前途的方法,但通常需要太赫兹频率才能产生纳米级波长。在这项工作中,通过声-结构相互作用,使用兆赫兹驱动频率产生了稳定的纳米尺度力梯度。在微流道和行波表面声波(SAW)器件之间的界面上使用结构化弹性层,产生了亚微米级的声阱,每个声阱都可以捕获单个亚微米级的粒子。纳米腔的声驱动变形产生了时均声场,将悬浮粒子引导并捕获到纳米腔内。表面声波的使用允许在单个粒子水平上进行大规模的、具有确定性图案的粒子操纵。在这项工作中,使用波长范围为 20-80 µm 的行波 SAW 将 300nm 直径的粒子在 500nm 直径的腔中声捕获,每个腔中一个粒子。按需产生纳米尺度的声力梯度在纳米粒子操纵中有广泛的应用,包括生物粒子富集和增强工业应用中的催化反应。