Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
IET Syst Biol. 2020 Apr;14(2):68-74. doi: 10.1049/iet-syb.2018.5125.
Temperature is an important determinant of bacterial growth. While the dependence of bacterial growth on different temperatures has been well studied for many bacterial species, prediction of bacterial growth rate for dynamic temperature changes is relatively unclear. Here, the authors address this issue using a combination of experimental measurements of the growth, at the resolution of 5 min, of and mathematical models. They measure growth curves at different temperatures and estimate model parameters to predict bacterial growth profiles subject to dynamic temperature changes. They compared these predicted growth profiles for various step-like temperature changes with experimental measurements using the coefficient of determination and mean square error and based on this comparison, ranked the different growth models, finding that the generalised logistic growth model gave the smallest error. They note that as the maximum specific growth increases the duration of this growth predominantly decreases. These results provide a basis to compute the dependence of the growth rate parameter in biomolecular circuits on dynamic temperatures and may be useful for designing biomolecular circuits that are robust to temperature.
温度是细菌生长的重要决定因素。虽然许多细菌物种的生长对不同温度的依赖性已经得到了很好的研究,但对于动态温度变化下细菌生长率的预测还相对不清楚。在这里,作者使用实验测量的细菌生长(分辨率为 5 分钟)和数学模型相结合来解决这个问题。他们在不同的温度下测量生长曲线,并估计模型参数来预测细菌在动态温度变化下的生长曲线。他们使用决定系数和均方误差将这些预测的生长曲线与不同阶跃式温度变化的实验测量进行比较,并根据比较结果对不同的生长模型进行排名,发现广义逻辑斯谛生长模型的误差最小。他们注意到,随着最大比生长速率的增加,生长的主要持续时间减少。这些结果为计算生物分子电路中生长速率参数对动态温度的依赖性提供了基础,并且对于设计对温度具有鲁棒性的生物分子电路可能是有用的。