Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
Nature. 2018 Nov;563(7731):402-406. doi: 10.1038/s41586-018-0634-9. Epub 2018 Oct 24.
While research into the biology of animal behaviour has primarily focused on the central nervous system, cues from peripheral tissues and the environment have been implicated in brain development and function. There is emerging evidence that bidirectional communication between the gut and the brain affects behaviours including anxiety, cognition, nociception and social interaction. Coordinated locomotor behaviour is critical for the survival and propagation of animals, and is regulated by internal and external sensory inputs. However, little is known about how the gut microbiome influences host locomotion, or the molecular and cellular mechanisms involved. Here we report that germ-free status or antibiotic treatment results in hyperactive locomotor behaviour in the fruit fly Drosophila melanogaster. Increased walking speed and daily activity in the absence of a gut microbiome are rescued by mono-colonization with specific bacteria, including the fly commensal Lactobacillus brevis. The bacterial enzyme xylose isomerase from L. brevis recapitulates the locomotor effects of microbial colonization by modulating sugar metabolism in flies. Notably, thermogenetic activation of octopaminergic neurons or exogenous administration of octopamine, the invertebrate counterpart of noradrenaline, abrogates the effects of xylose isomerase on Drosophila locomotion. These findings reveal a previously unappreciated role for the gut microbiome in modulating locomotion, and identify octopaminergic neurons as mediators of peripheral microbial cues that regulate motor behaviour in animals.
虽然动物行为生物学的研究主要集中在中枢神经系统,但外周组织和环境的线索已被牵涉到大脑的发育和功能中。有新的证据表明,肠道和大脑之间的双向通讯会影响包括焦虑、认知、疼痛感知和社交互动在内的行为。协调的运动行为对动物的生存和繁衍至关重要,它受到内部和外部感觉输入的调节。然而,人们对肠道微生物组如何影响宿主的运动行为,或涉及的分子和细胞机制知之甚少。在这里,我们报告无菌状态或抗生素处理会导致果蝇 Drosophila melanogaster 的运动行为过度活跃。在没有肠道微生物组的情况下,通过与特定细菌(包括果蝇共生菌 Lactobacillus brevis)的单定植,行走速度和日常活动增加得到了挽救。来自 L. brevis 的细菌酶木糖异构酶通过调节果蝇中的糖代谢,再现了微生物定植的运动效应。值得注意的是,章鱼胺能神经元的热遗传激活或外源性给予章鱼胺(去甲肾上腺素的无脊椎动物对应物)会消除木糖异构酶对果蝇运动的影响。这些发现揭示了肠道微生物组在调节运动方面的一个以前未被认识到的作用,并确定章鱼胺能神经元是调节动物运动行为的外周微生物线索的介导者。