Suppr超能文献

MAINMAST分割:用于具有对称性的冷冻电镜密度图的自动图谱分割方法

MAINMASTseg: Automated Map Segmentation Method for Cryo-EM Density Maps with Symmetry.

作者信息

Terashi Genki, Kagaya Yuki, Kihara Daisuke

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States.

Graduate School of Information Sciences, Tohoku University, Aramaki Aza, Aoba 6-3-09, Aoba-Ku, Sendai, Miyagi 980-8579, Japan.

出版信息

J Chem Inf Model. 2020 May 26;60(5):2634-2643. doi: 10.1021/acs.jcim.9b01110. Epub 2020 Mar 30.

Abstract

For structural interpretation of cryo-electron microscopy (cryo-EM) density maps that contain multiple chains, map segmentation is an important step. If a map is segmented accurately into regions of individual protein components, the structure of each protein can be separately modeled using an existing modeling tool. Here, we developed new software, MAINMASTseg, for segmenting maps with symmetry. MAINMASTseg is an extension of the MAINMAST cryo-EM protein structure modeling tool, which builds protein structures from a graph structure that captures the distribution of salient density points in the map. MAINMASTseg uses this graph and segments the map by considering symmetry corresponding density points in the graph. We tested MAINMASTseg on a data set of 38 experimentally determined EM density maps. MAINMASTseg successfully identified an individual protein unit for the majority of the maps, which was significantly better than two other popular existing methods, Segger and Phenix. The software is made freely available for academic users at http://kiharalab.org/mainmast_seg.

摘要

对于包含多条链的冷冻电子显微镜(cryo-EM)密度图的结构解释而言,图谱分割是重要的一步。如果能将图谱准确分割成各个蛋白质组分的区域,那么就可以使用现有的建模工具分别对每个蛋白质的结构进行建模。在此,我们开发了新软件MAINMASTseg,用于分割具有对称性的图谱。MAINMASTseg是MAINMAST冷冻电镜蛋白质结构建模工具的扩展,该工具通过捕获图谱中显著密度点分布的图形结构构建蛋白质结构。MAINMASTseg利用此图形,并通过考虑图形中对应对称的密度点来分割图谱。我们在一组由38个实验测定的电镜密度图数据集上测试了MAINMASTseg。MAINMASTseg成功地为大多数图谱识别出了单个蛋白质单元,这比另外两种现有的常用方法Segger和Phenix要好得多。该软件可供学术用户在http://kiharalab.org/mainmast_seg免费使用。

相似文献

8
De Novo modeling in cryo-EM density maps with Pathwalking.利用路径行走在冷冻电镜密度图中进行从头建模。
J Struct Biol. 2016 Dec;196(3):289-298. doi: 10.1016/j.jsb.2016.06.004. Epub 2016 Jul 17.

引用本文的文献

1
Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge.EMDataResource 冷冻电镜配体建模挑战赛的结果。
Nat Methods. 2024 Jul;21(7):1340-1348. doi: 10.1038/s41592-024-02321-7. Epub 2024 Jun 25.
8
Faces of Contemporary CryoEM Information and Modeling.当代冷冻电镜信息与建模的面貌。
J Chem Inf Model. 2020 May 26;60(5):2407-2409. doi: 10.1021/acs.jcim.0c00481.

本文引用的文献

7
Trends in the Electron Microscopy Data Bank (EMDB).电子显微镜数据库(EMDB)的发展趋势。
Acta Crystallogr D Struct Biol. 2017 Jun 1;73(Pt 6):503-508. doi: 10.1107/S2059798317004181. Epub 2017 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验