Suppr超能文献

利用大豆种质资源多样性群体进行深绿颜色指数的全基因组关联分析。

Genome-Wide Association Mapping of Dark Green Color Index using a Diverse Panel of Soybean Accessions.

机构信息

Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72704, USA.

USDA-ARS, U.S. Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA.

出版信息

Sci Rep. 2020 Mar 20;10(1):5166. doi: 10.1038/s41598-020-62034-7.

Abstract

Nitrogen (N) plays a key role in plants because it is a major component of RuBisCO and chlorophyll. Hence, N is central to both the dark and light reactions of photosynthesis. Genotypic variation in canopy greenness provides insights into the variation of N and chlorophyll concentration, photosynthesis rates, and N fixation in legumes. The objective of this study was to identify significant loci associated with the intensity of greenness of the soybean [Glycine max (L.) Merr.] canopy as determined by the Dark Green Color Index (DGCI). A panel of 200 maturity group IV accessions was phenotyped for canopy greenness using DGCI in three environments. Association mapping identified 45 SNPs that were significantly (P ≤ 0.0003) associated with DGCI in three environments, and 16 significant SNPs associated with DGCI averaged across all environments. These SNPs likely tagged 43 putative loci. Out of these 45 SNPs, eight were present in more than one environment. Among the identified loci, 21 were located in regions previously reported for N traits and ureide concentration. Putative loci that were coincident with previously reported genomic regions may be important resources for pyramiding favorable alleles for improved N and chlorophyll concentrations, photosynthesis rates, and N fixation in soybean.

摘要

氮(N)在植物中起着关键作用,因为它是 RuBisCO 和叶绿素的主要成分。因此,N 是光合作用暗反应和光反应的核心。冠层绿色度的基因型变异为了解 N 和叶绿素浓度、光合作用速率以及豆科植物的固氮变化提供了线索。本研究的目的是鉴定与大豆[Glycine max(L.)Merr.]冠层绿色度强度相关的显著位点,该绿色度强度由暗绿色指数(DGCI)确定。在三个环境中,使用 DGCI 对 200 个成熟组 IV 品系的冠层绿色度进行了表型分析。关联图谱鉴定出 45 个在三个环境中与 DGCI 显著相关(P≤0.0003)的 SNP,以及 16 个在所有环境中平均与 DGCI 显著相关的 SNP。这些 SNP 可能标记了 43 个假定的基因座。在这 45 个 SNP 中,有 8 个存在于一个以上的环境中。在所鉴定的基因座中,有 21 个位于先前报道的 N 性状和脲浓度的区域。与先前报道的基因组区域重合的假定基因座可能是在大豆中聚合有利等位基因以提高 N 和叶绿素浓度、光合作用速率和固氮的重要资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/902a/7083947/b1c02facfbee/41598_2020_62034_Fig1_HTML.jpg

相似文献

4
Genome-wide association mapping of canopy wilting in diverse soybean genotypes.
Theor Appl Genet. 2017 Oct;130(10):2203-2217. doi: 10.1007/s00122-017-2951-z. Epub 2017 Jul 20.
6
Genetic dissection of ten photosynthesis-related traits based on InDel- and SNP-GWAS in soybean.
Theor Appl Genet. 2024 Apr 8;137(5):96. doi: 10.1007/s00122-024-04607-y.
7
Genome-Wide Association Analyses Reveal Genomic Regions Controlling Canopy Wilting in Soybean.
G3 (Bethesda). 2020 Apr 9;10(4):1413-1425. doi: 10.1534/g3.119.401016.
9
GWAS reveals two novel loci for photosynthesis-related traits in soybean.
Mol Genet Genomics. 2020 May;295(3):705-716. doi: 10.1007/s00438-020-01661-1. Epub 2020 Mar 12.

引用本文的文献

1
Association mapping for water use efficiency in soybean identifies previously reported and novel loci and permits genomic prediction.
Front Plant Sci. 2024 Nov 28;15:1486736. doi: 10.3389/fpls.2024.1486736. eCollection 2024.
3
Identification of loci associated with water use efficiency and symbiotic nitrogen fixation in soybean.
Front Plant Sci. 2023 Nov 16;14:1271849. doi: 10.3389/fpls.2023.1271849. eCollection 2023.
4
Maize Production under Drought Stress: Nutrient Supply, Yield Prediction.
Plants (Basel). 2023 Sep 18;12(18):3301. doi: 10.3390/plants12183301.
6
"Canopy fingerprints" for characterizing three-dimensional point cloud data of soybean canopies.
Front Plant Sci. 2023 Mar 29;14:1141153. doi: 10.3389/fpls.2023.1141153. eCollection 2023.
7
Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review.
J Adv Res. 2021 May 12;35:215-230. doi: 10.1016/j.jare.2021.05.002. eCollection 2022 Jan.
8
Identification and Confirmation of Loci Associated With Canopy Wilting in Soybean Using Genome-Wide Association Mapping.
Front Plant Sci. 2021 Jul 14;12:698116. doi: 10.3389/fpls.2021.698116. eCollection 2021.
9
Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep.
PLoS One. 2021 Jan 22;16(1):e0244408. doi: 10.1371/journal.pone.0244408. eCollection 2021.

本文引用的文献

1
Genome-Wide Association Analysis of Diverse Soybean Genotypes Reveals Novel Markers for Nitrogen Traits.
Plant Genome. 2015 Nov;8(3):eplantgenome2014.11.0086. doi: 10.3835/plantgenome2014.11.0086.
2
Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize.
Front Plant Sci. 2020 Feb 25;10:1794. doi: 10.3389/fpls.2019.01794. eCollection 2019.
4
Estimation of a significance threshold for genome-wide association studies.
BMC Genomics. 2019 Jul 29;20(1):618. doi: 10.1186/s12864-019-5992-7.
5
Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits.
Front Plant Sci. 2019 Feb 11;10:100. doi: 10.3389/fpls.2019.00100. eCollection 2019.
7
Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis.
Plant Physiol. 2018 Feb;176(2):1215-1232. doi: 10.1104/pp.17.01401. Epub 2017 Oct 23.
8
Genome-wide association mapping of canopy wilting in diverse soybean genotypes.
Theor Appl Genet. 2017 Oct;130(10):2203-2217. doi: 10.1007/s00122-017-2951-z. Epub 2017 Jul 20.
9
Prediction and association mapping of agronomic traits in maize using multiple omic data.
Heredity (Edinb). 2017 Sep;119(3):174-184. doi: 10.1038/hdy.2017.27. Epub 2017 Jun 7.
10
Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions.
Front Plant Sci. 2017 Apr 18;8:549. doi: 10.3389/fpls.2017.00549. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验