Department of Psychology, University of South Florida, Tampa, Florida.
Department of Psychology, University of South Florida, Tampa, Florida.
Biol Psychiatry. 2020 Jul 1;88(1):18-27. doi: 10.1016/j.biopsych.2020.01.013. Epub 2020 Jan 28.
Co-occurrence of psychiatric disorders is well documented. Recent quantitative efforts have moved toward an understanding of this phenomenon, with the general psychopathology or p-factor model emerging as the most prominent characterization. Over the past decade, bifactor model analysis has become increasingly popular as a statistical approach to describe common/shared and unique elements in psychopathology. However, recent work has highlighted potential problems with common approaches to evaluating and interpreting bifactor models. Here, we argue that bifactor models, when properly applied and interpreted, can be useful for answering some important questions in psychology and psychiatry research. We review problems with evaluating bifactor models based on global model fit statistics. We then describe more valid approaches to evaluating bifactor models and highlight 3 types of research questions for which bifactor models are well suited to answer. We also discuss the utility and limits of bifactor applications in genetic and neurobiological research. We close by comparing advantages and disadvantages of bifactor models with other analytic approaches and note that no statistical model is a panacea to rectify limitations of the research design used to gather data.
精神障碍的共病现象已有大量记载。最近的定量研究已经开始深入了解这一现象,其中一般精神病理学或 p 因子模型是最突出的特征。在过去的十年中,双因子模型分析已成为一种越来越流行的统计方法,用于描述精神病理学中的常见/共享和独特元素。然而,最近的研究强调了评估和解释双因子模型的常见方法存在的潜在问题。在这里,我们认为,当正确应用和解释时,双因子模型可以用于回答心理学和精神病学研究中的一些重要问题。我们回顾了基于全局模型拟合统计数据评估双因子模型的问题。然后,我们描述了更有效的评估双因子模型的方法,并强调了双因子模型非常适合回答的 3 种类型的研究问题。我们还讨论了双因子模型在遗传和神经生物学研究中的应用的效用和局限性。最后,我们将双因子模型与其他分析方法进行了比较,并指出没有一种统计模型是解决用于收集数据的研究设计的局限性的灵丹妙药。