Karlov Dmitry S, Sosnin Sergey, Fedorov Maxim V, Popov Petr
Skolkovo Institute of Science and Technology, Moscow 143026, Russia.
Skolkovo Innovation Center,Syntelly LLC, 42 Bolshoy Boulevard, Moscow 143026, Russia.
ACS Omega. 2020 Mar 9;5(10):5150-5159. doi: 10.1021/acsomega.9b04162. eCollection 2020 Mar 17.
In this work, we present graph-convolutional neural networks for the prediction of binding constants of protein-ligand complexes. We derived the model using multi task learning, where the target variables are the dissociation constant ( ), inhibition constant ( ), and half maximal inhibitory concentration (IC). Being rigorously trained on the PDBbind dataset, the model achieves the Pearson correlation coefficient of 0.87 and the RMSE value of 1.05 in pK units, outperforming recently developed 3D convolutional neural network model .
在这项工作中,我们提出了用于预测蛋白质-配体复合物结合常数的图卷积神经网络。我们使用多任务学习推导该模型,其中目标变量是解离常数( )、抑制常数( )和半数最大抑制浓度(IC)。在PDBbind数据集上经过严格训练后,该模型在pK单位下实现了0.87的皮尔逊相关系数和1.05的均方根误差值,优于最近开发的3D卷积神经网络模型 。