Suppr超能文献

采用高温顶空进样气相色谱-质谱联用法定量分析特定萜类/萜烯类化合物和尼古丁。

Quantitation of Select Terpenes/Terpenoids and Nicotine Using Gas Chromatography-Mass Spectrometry with High-Temperature Headspace Sampling.

作者信息

Nguyen Trinh-Don, Riordan-Short Seamus, Dang Thu-Thuy T, O'Brien Rob, Noestheden Matthew

机构信息

Department of Chemistry, Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.

Supra Research and Development, Kelowna, British Columbia V1W 4C2, Canada.

出版信息

ACS Omega. 2020 Mar 2;5(10):5565-5573. doi: 10.1021/acsomega.0c00384. eCollection 2020 Mar 17.

Abstract

Plants are the main sources of many high-value bioactive terpenoids used in the medical, fragrance, and food industries. Increasing demand for these bioactive plants and their derivative products (e.g., cannabis and extracts thereof) requires robust approaches to verify feedstock, identify product adulteration, and ensure product safety. Reported here are single-laboratory validation details for a robust testing method to quantitate select terpenes and terpenoids in dry plant materials and terpenoid-containing vaping liquids (e.g., a derivative product) using high-temperature headspace gas chromatography-mass spectrometry, with glycerol used as a headspace solvent. Validated method recoveries were 75-103%, with excellent repeatability (relative standard deviation (RSD) < 5%) and intermediate precision (RSD < 12%). The use of high-temperature headspace (180 °C) permitted terpene and terpenoid profiles to be monitored at temperatures consistent with vaping conditions.

摘要

植物是医药、香料和食品工业中许多高价值生物活性萜类化合物的主要来源。对这些具有生物活性的植物及其衍生产品(如大麻及其提取物)的需求不断增加,这就需要采用可靠的方法来验证原料、识别产品掺假并确保产品安全。本文报道了一种可靠的检测方法的单实验室验证细节,该方法使用高温顶空气相色谱-质谱联用技术,以甘油作为顶空溶剂,对干燥植物材料和含萜类化合物的电子烟液(如一种衍生产品)中的特定萜烯和萜类化合物进行定量分析。验证方法的回收率为75-103%,具有出色的重复性(相对标准偏差(RSD)<5%)和中间精密度(RSD<12%)。使用高温顶空(180°C)可以在与电子烟条件一致的温度下监测萜烯和萜类化合物的谱图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf8/7081649/7fecbab8ee10/ao0c00384_0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验