Suppr超能文献

新型解磷菌促进矿区退化土地生态恢复后的土壤磷循环。

Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining.

机构信息

Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.

School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.

出版信息

ISME J. 2020 Jun;14(6):1600-1613. doi: 10.1038/s41396-020-0632-4. Epub 2020 Mar 23.

Abstract

Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing gcd in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.

摘要

关于陆地生态系统管理和恢复过程中土壤微生物磷(P)循环潜力的变化,人们知之甚少,尽管许多研究旨在增强土壤 P 循环。在这里,我们使用宏基因组测序分析了中国南方一个磷缺乏的退化矿区的 18 个土壤微生物群落,该矿区使用两种土壤改良剂和八种植物物种进行了生态恢复。研究结果表明,与未恢复的矿区相比,恢复后的矿区控制土壤微生物 P 循环潜力的关键基因的相对丰度更高,表明恢复后土壤 P 循环得到了增强。gcd 基因编码一种介导无机 P 溶解的酶,在土壤样本中普遍存在,是生物可利用土壤 P 的主要决定因素。我们重建了 39 个含有 gcd 的近完整细菌基因组,代表了各种新型的磷酸盐溶解微生物类群。这些基因组的相对丰度与生物可利用土壤 P 之间存在很强的相关性,表明它们对增强土壤 P 循环的贡献。此外,在 39 个基因组中含有 gcd 的支架中检测到 84 个移动遗传元件,为噬菌体相关水平基因转移在协助土壤微生物获得与 P 循环相关的新代谢潜力方面的作用提供了证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1312/7242446/5fa10780e04a/41396_2020_632_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验