Suppr超能文献

基底前脑体积可靠地预测阿尔茨海默病退行性变的皮质扩散。

Basal forebrain volume reliably predicts the cortical spread of Alzheimer's degeneration.

机构信息

Department of Psychology, University of Salzburg, Salzburg, Austria.

Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.

出版信息

Brain. 2020 Mar 1;143(3):993-1009. doi: 10.1093/brain/awaa012.

Abstract

Alzheimer's disease neurodegeneration is thought to spread across anatomically and functionally connected brain regions. However, the precise sequence of spread remains ambiguous. The prevailing model used to guide in vivo human neuroimaging and non-human animal research assumes that Alzheimer's degeneration starts in the entorhinal cortices, before spreading to the temporoparietal cortex. Challenging this model, we previously provided evidence that in vivo markers of neurodegeneration within the nucleus basalis of Meynert (NbM), a subregion of the basal forebrain heavily populated by cortically projecting cholinergic neurons, precedes and predicts entorhinal degeneration. There have been few systematic attempts at directly comparing staging models using in vivo longitudinal biomarker data, and none to our knowledge testing if comparative evidence generalizes across independent samples. Here we addressed the sequence of pathological staging in Alzheimer's disease using two independent samples of the Alzheimer's Disease Neuroimaging Initiative (n1 = 284; n2 = 553) with harmonized CSF assays of amyloid-β and hyperphosphorylated tau (pTau), and longitudinal structural MRI data over 2 years. We derived measures of grey matter degeneration in a priori NbM and the entorhinal cortical regions of interest. To examine the spreading of degeneration, we used a predictive modelling strategy that tests whether baseline grey matter volume in a seed region accounts for longitudinal change in a target region. We demonstrated that predictive spread favoured the NbM→entorhinal over the entorhinal→NbM model. This evidence generalized across the independent samples. We also showed that CSF concentrations of pTau/amyloid-β moderated the observed predictive relationship, consistent with evidence in rodent models of an underlying trans-synaptic mechanism of pathophysiological spread. The moderating effect of CSF was robust to additional factors, including clinical diagnosis. We then applied our predictive modelling strategy to an exploratory whole-brain voxel-wise analysis to examine the spatial specificity of the NbM→entorhinal model. We found that smaller baseline NbM volumes predicted greater degeneration in localized regions of the entorhinal and perirhinal cortices. By contrast, smaller baseline entorhinal volumes predicted degeneration in the medial temporal cortex, recapitulating a prior influential staging model. Our findings suggest that degeneration of the basal forebrain cholinergic projection system is a robust and reliable upstream event of entorhinal and neocortical degeneration, calling into question a prevailing view of Alzheimer's disease pathogenesis.

摘要

阿尔茨海默病的神经退行性变被认为是在解剖和功能上相互连接的大脑区域内扩散的。然而,其确切的扩散顺序仍然不明确。目前用于指导体内人类神经影像学和非人类动物研究的流行模型假设阿尔茨海默病的退化始于内嗅皮质,然后再扩散到颞顶叶皮质。我们之前的研究结果挑战了这一模型,我们提供的证据表明,在基底前脑的 Meynert 核(NbM)内的神经退行性变的体内标记物(该核是一个富含皮质投射胆碱能神经元的基底前脑的亚区),先于并预测了内嗅皮质的退化。很少有系统地尝试使用体内纵向生物标志物数据直接比较分期模型,也没有人知道是否有比较证据可以推广到独立样本。在这里,我们使用阿尔茨海默病神经影像学倡议(ADNI)的两个独立样本(n1=284;n2=553),使用淀粉样蛋白-β和过度磷酸化 tau(pTau)的 CSF 分析以及 2 年的纵向结构 MRI 数据,使用两种独立的样本来解决阿尔茨海默病的病理分期顺序问题。我们得出了在预先设定的 NbM 和内嗅皮质感兴趣区域的灰质变性的测量值。为了检查退化的扩散,我们使用了一种预测建模策略,该策略测试种子区域中的基线灰质体积是否可以解释目标区域的纵向变化。我们证明,预测的扩散有利于 NbM→内嗅皮质,而不是内嗅皮质→NbM 模型。该证据在独立样本中具有普遍性。我们还表明,CSF 中 pTau/淀粉样蛋白-β的浓度调节了观察到的预测关系,这与在啮齿动物模型中观察到的潜在的突触间病理扩散机制的证据一致。CSF 的调节作用不受包括临床诊断在内的其他因素的影响。然后,我们将我们的预测建模策略应用于探索性的全脑体素分析,以检查 NbM→内嗅皮质模型的空间特异性。我们发现,较小的基线 NbM 体积预示着内嗅皮质和旁嗅皮质局部区域的更大退化。相比之下,较小的内嗅皮质基线体积预示着内侧颞叶的退化,再现了先前有影响力的分期模型。我们的研究结果表明,基底前脑胆碱能投射系统的退化是内嗅皮质和新皮质退化的可靠和可靠的上游事件,这对阿尔茨海默病发病机制的流行观点提出了质疑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/326f/7092749/2327eae5e06c/awaa012f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验