Suppr超能文献

人脑干白质束的概率映射与自动分割

Probabilistic Mapping and Automated Segmentation of Human Brainstem White Matter Bundles.

作者信息

Olchanyi Mark D, Schreier David R, Li Jian, Maffei Chiara, Sorby-Adams Annabel, Kinney Hannah C, Healy Brian C, Freeman Holly J, Shless Jared, Destrieux Christophe, Tregidgo Henry, Iglesias Juan Eugenio, Brown Emery N, Edlow Brian L

机构信息

Neuroscience Statistics Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.

Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.

出版信息

medRxiv. 2025 May 5:2025.05.01.25326687. doi: 10.1101/2025.05.01.25326687.

Abstract

Brainstem white matter bundles are essential conduits for neural signaling involved in modulation of vital functions ranging from homeostasis to human consciousness. Their architecture forms the anatomic basis for brainstem connectomics, subcortical mesoscale circuit models, and deep brain navigation tools. However, their small size and complex morphology compared to cerebral white matter structures makes mapping and segmentation challenging in neuroimaging. This results in a near absence of automated brainstem white matter tracing methods. We leverage diffusion MRI tractography to create BrainStem Bundle Tool (BSBT), which segments eight key white matter bundles in the rostral brainstem. BSBT performs automated segmentation on a custom probabilistic fiber map generated from tractography with a convolutional neural network architecture tailored for detection of small structures. We demonstrate BSBTs robustness across diffusion MRI acquisition protocols through validation on healthy subject scans and scans of brain specimens with corresponding histology. Using BSBT, we reveal distinct brainstem white matter bundle alterations in Alzheimer's disease, Parkinson's disease, and acute traumatic brain injury cohorts through tract-based analysis and classification tasks. Finally, we provide proof-of-principle evidence supporting the prognostic utility of BSBT in a longitudinal analysis of coma recovery. BSBT creates opportunities to automatically map brainstem white matter in large imaging cohorts and investigate its role in a broad spectrum of neurological disorders.

摘要

脑干白质束是神经信号传导的重要通道,参与从体内平衡到人类意识等各种重要功能的调节。它们的结构构成了脑干连接组学、皮质下中尺度电路模型和深部脑导航工具的解剖学基础。然而,与脑白质结构相比,它们体积小且形态复杂,这使得在神经成像中进行映射和分割具有挑战性。这导致几乎没有自动的脑干白质追踪方法。我们利用扩散磁共振成像纤维束成像技术创建了脑干束工具(BSBT),该工具可分割延髓脑干中的八个关键白质束。BSBT在由纤维束成像生成的定制概率纤维图上进行自动分割,采用了专门为检测小结构而设计的卷积神经网络架构。我们通过对健康受试者扫描以及具有相应组织学的脑标本扫描进行验证,证明了BSBT在不同扩散磁共振成像采集协议下的稳健性。使用BSBT,我们通过基于纤维束的分析和分类任务,揭示了阿尔茨海默病、帕金森病和急性创伤性脑损伤队列中不同的脑干白质束改变。最后,我们提供了原理验证证据,支持BSBT在昏迷恢复纵向分析中的预后效用。BSBT为在大型成像队列中自动绘制脑干白质图以及研究其在广泛神经系统疾病中的作用创造了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b0/12083584/d2641854cd6f/nihpp-2025.05.01.25326687v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验