State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Wuhan, PR China.
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110633. doi: 10.1016/j.msec.2020.110633. Epub 2020 Jan 7.
The potential of external ions doped biomaterials has been extensively explored; however, the co-doped biomaterials remain typically unexplored for their biological properties for precise biomedical applications. The current study was aimed to explore the impact of structural features of Sr/Fe co-doped hydroxyapatite (HAp) bionanomaterial on osteoblastic proliferation and osteogenic differentiation for its application as a bone substitute. A 10 mol% isomorphous co-doping of strontium and iron with respect to calcium was carried into HAp in the solid solution. Raman spectroscopy verified the presence of major functional groups of apatite structure together with the carbonate peaks. The Sr/Fe co-doped HAp bionanomaterials showed slightly negative zeta potential (at neutral pH), versatile DLS particle size (140-205 nm), high BET surface area (186 m/g), and narrow width pore size (13-19 nm). TG/DTA analysis showed low thermal stability of the Sr/Fe co-doped HAp groups. The nanoparticles showed an initial burst release of amoxicillin for 15 h followed by extended-release up to 81 h and demonstrated an excellent antibacterial activity by producing inhibition zones of 17.6 ± 0.3 mm and 19.5 mm ± 0.4 mm for Escherichia coli and Staphylococcus aureus. Live/dead cell staining and MTT assay confirmed the non-toxic nature of Sr/Fe co-doped HAp bionanomaterial towards MC3T3-E1 cells. Further, an improved ALP activity, increased calcium deposition, enhanced RUNX2 expression, and regulated OPN and OCN expression levels suggest in MC3T3-E1 cells demonstrate the maturation of osteoblasts. This study provides the unique advantages of the co-doping approach for the applications Sr/Fe co-doped HAp bionanomaterials as a bone substitute.
外掺离子的生物材料的潜力已被广泛探索;然而,对于其在精确生物医学应用中的生物特性,共掺生物材料仍然典型地未被探索。本研究旨在探索 Sr/Fe 共掺羟基磷灰石(HAp)仿生纳米材料的结构特征对成骨细胞增殖和成骨分化的影响,以将其用作骨替代物。在固溶体中对 HAp 进行了钙的 10 mol%同晶共掺 Sr 和 Fe。拉曼光谱证实了磷灰石结构的主要官能团的存在以及碳酸盐峰的存在。Sr/Fe 共掺 HAp 仿生纳米材料表现出略微负的 ζ 电位(在中性 pH 下)、多功能 DLS 粒径(140-205nm)、高 BET 比表面积(186m/g)和窄孔径(13-19nm)。TG/DTA 分析表明 Sr/Fe 共掺 HAp 组的热稳定性较低。纳米颗粒在最初的 15 小时内迅速释放阿莫西林,然后持续释放长达 81 小时,并通过产生 17.6±0.3mm 和 19.5mm±0.4mm 的抑菌圈表现出优异的抗菌活性,分别针对大肠杆菌和金黄色葡萄球菌。活/死细胞染色和 MTT 测定证实 Sr/Fe 共掺 HAp 仿生纳米材料对 MC3T3-E1 细胞无毒性。此外,ALP 活性增加、钙沉积增加、RUNX2 表达增强以及 OPN 和 OCN 表达水平的调节表明,在 MC3T3-E1 细胞中,成骨细胞的成熟得到了改善。这项研究提供了共掺杂方法的独特优势,可将 Sr/Fe 共掺 HAp 仿生纳米材料应用于骨替代物。