Bao Juncheng, Markovic Tomislav, Brancato Luigi, Kil Dries, Ocket Ilja, Puers Robert, Nauwelaers Bart
KU Leuven, Div. ESAT-TELEMIC, Kasteelpark Arenberg 10, 3001 Leuven, Belgium.
IMEC, Kapeldeef 75, 3001 Leuven, Belgium.
Micromachines (Basel). 2020 Mar 19;11(3):320. doi: 10.3390/mi11030320.
This paper presents a novel fabrication process that allows integration of polydimethylsiloxane (PDMS)-based microfluidic channels and metal electrodes on a wafer with a micrometer-range alignment accuracy. This high level of alignment accuracy enables integration of microwave and microfluidic technologies, and furthermore accurate microwave dielectric characterization of biological liquids and chemical compounds on a nanoliter scale. The microfluidic interface between the pump feed lines and the fluidic channels was obtained using magnets fluidic connection. The tube-channel interference and the fluidic channel-wafer adhesion was evaluated, and up to a pressure of 700 mBar no leakage was observed. The developed manufacturing process was tested on a design of a microwave-microfluidic capacitive sensor. An interdigital capacitor (IDC) and a microfluidic channel were manufactured with an alignment accuracy of 2.5 μm. The manufactured IDC sensor was used to demonstrate microwave dielectric sensing on deionized water and saline solutions with concentrations of 0.1, 0.5, 1, and 2.5 M.
本文介绍了一种新颖的制造工艺,该工艺能够在晶圆上以微米级对准精度集成基于聚二甲基硅氧烷(PDMS)的微流体通道和金属电极。这种高水平的对准精度实现了微波技术与微流体技术的集成,进而能够在纳升尺度上对生物液体和化合物进行精确的微波介电特性表征。泵的进料管线与流体通道之间的微流体接口是通过磁体流体连接获得的。评估了管道与通道之间的干扰以及流体通道与晶圆之间的附着力,在高达700毫巴的压力下未观察到泄漏现象。所开发的制造工艺在微波 - 微流体电容式传感器的设计上进行了测试。制造了一个叉指电容器(IDC)和一个微流体通道,对准精度为2.5微米。所制造的IDC传感器用于演示对去离子水和浓度分别为0.1、0.5、1和2.5 M的盐溶液的微波介电传感。