Suppr超能文献

定量成像特征管道:一种用于利用、共享和构建图像处理管道的基于网络的工具。

Quantitative imaging feature pipeline: a web-based tool for utilizing, sharing, and building image-processing pipelines.

作者信息

Mattonen Sarah A, Gude Dev, Echegaray Sebastian, Bakr Shaimaa, Rubin Daniel L, Napel Sandy

机构信息

Stanford University, Department of Radiology, Stanford, California, United States.

The University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada.

出版信息

J Med Imaging (Bellingham). 2020 Jul;7(4):042803. doi: 10.1117/1.JMI.7.4.042803. Epub 2020 Mar 14.

Abstract

Quantitative image features that can be computed from medical images are proving to be valuable biomarkers of underlying cancer biology that can be used for assessing treatment response and predicting clinical outcomes. However, validation and eventual clinical implementation of these tools is challenging due to the absence of shared software algorithms, architectures, and the tools required for computing, comparing, evaluating, and disseminating predictive models. Similarly, researchers need to have programming expertise in order to complete these tasks. The quantitative image feature pipeline (QIFP) is an open-source, web-based, graphical user interface (GUI) of configurable quantitative image-processing pipelines for both planar (two-dimensional) and volumetric (three-dimensional) medical images. This allows researchers and clinicians a GUI-driven approach to process and analyze images, without having to write any software code. The QIFP allows users to upload a repository of linked imaging, segmentation, and clinical data or access publicly available datasets (e.g., The Cancer Imaging Archive) through direct links. Researchers have access to a library of file conversion, segmentation, quantitative image feature extraction, and machine learning algorithms. An interface is also provided to allow users to upload their own algorithms in Docker containers. The QIFP gives researchers the tools and infrastructure for the assessment and development of new imaging biomarkers and the ability to use them for single and multicenter clinical and virtual clinical trials.

摘要

可从医学图像中计算得出的定量图像特征,正被证明是潜在癌症生物学的有价值生物标志物,可用于评估治疗反应和预测临床结果。然而,由于缺乏共享的软件算法、架构以及计算、比较、评估和传播预测模型所需的工具,这些工具的验证和最终临床应用具有挑战性。同样,研究人员需要具备编程专业知识才能完成这些任务。定量图像特征管道(QIFP)是一个基于网络的开源图形用户界面(GUI),用于处理平面(二维)和体积(三维)医学图像的可配置定量图像处理管道。这使研究人员和临床医生能够通过GUI驱动的方法来处理和分析图像,而无需编写任何软件代码。QIFP允许用户上传链接的成像、分割和临床数据存储库,或通过直接链接访问公开可用的数据集(例如,癌症成像存档)。研究人员可以使用文件转换、分割、定量图像特征提取和机器学习算法库。还提供了一个接口,允许用户在Docker容器中上传自己的算法。QIFP为研究人员提供了评估和开发新成像生物标志物的工具和基础设施,以及将其用于单中心和多中心临床及虚拟临床试验的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f54/7070161/31f4601aa529/JMI-007-042803-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验