Department of Neurosurgery, Stanford Hospital and Clinics, Stanford, California, USA.
Department of Radiology, Lucile Packard Children's Hospital, Stanford, California, USA.
Neuro Oncol. 2022 Jun 1;24(6):986-994. doi: 10.1093/neuonc/noab272.
The risk profile for posterior fossa ependymoma (EP) depends on surgical and molecular status [Group A (PFA) versus Group B (PFB)]. While subtotal tumor resection is known to confer worse prognosis, MRI-based EP risk-profiling is unexplored. We aimed to apply machine learning strategies to link MRI-based biomarkers of high-risk EP and also to distinguish PFA from PFB.
We extracted 1800 quantitative features from presurgical T2-weighted (T2-MRI) and gadolinium-enhanced T1-weighted (T1-MRI) imaging of 157 EP patients. We implemented nested cross-validation to identify features for risk score calculations and apply a Cox model for survival analysis. We conducted additional feature selection for PFA versus PFB and examined performance across three candidate classifiers.
For all EP patients with GTR, we identified four T2-MRI-based features and stratified patients into high- and low-risk groups, with 5-year overall survival rates of 62% and 100%, respectively (P < .0001). Among presumed PFA patients with GTR, four T1-MRI and five T2-MRI features predicted divergence of high- and low-risk groups, with 5-year overall survival rates of 62.7% and 96.7%, respectively (P = .002). T1-MRI-based features showed the best performance distinguishing PFA from PFB with an AUC of 0.86.
We present machine learning strategies to identify MRI phenotypes that distinguish PFA from PFB, as well as high- and low-risk PFA. We also describe quantitative image predictors of aggressive EP tumors that might assist risk-profiling after surgery. Future studies could examine translating radiomics as an adjunct to EP risk assessment when considering therapy strategies or trial candidacy.
后颅窝室管膜瘤(EP)的风险特征取决于手术和分子状态[组 A(PFA)与组 B(PFB)]。虽然全切除肿瘤被认为预后较差,但基于 MRI 的 EP 风险分析尚不清楚。我们旨在应用机器学习策略来关联基于 MRI 的高危 EP 生物标志物,同时区分 PFA 和 PFB。
我们从 157 例 EP 患者的术前 T2 加权(T2-MRI)和钆增强 T1 加权(T1-MRI)成像中提取了 1800 个定量特征。我们采用嵌套交叉验证来识别风险评分计算的特征,并应用 Cox 模型进行生存分析。我们还针对 PFA 与 PFB 进行了额外的特征选择,并在三个候选分类器中检验了性能。
对于所有 GTR 的 EP 患者,我们确定了四个 T2-MRI 特征,并将患者分为高风险和低风险组,5 年总生存率分别为 62%和 100%(P <.0001)。在 GTR 的假定 PFA 患者中,四个 T1-MRI 和五个 T2-MRI 特征预测了高风险和低风险组的差异,5 年总生存率分别为 62.7%和 96.7%(P =.002)。基于 T1-MRI 的特征在区分 PFA 和 PFB 方面表现出最佳性能,AUC 为 0.86。
我们提出了机器学习策略来识别区分 PFA 和 PFB 以及高危 PFA 的 MRI 表型。我们还描述了预测侵袭性 EP 肿瘤的定量图像预测因子,这些预测因子可能有助于术后风险分层。未来的研究可以考察将放射组学作为 EP 风险评估的辅助手段,以考虑治疗策略或试验候选资格。