Ludwig-Maximilians-Universität Munchen.
Friedrich-Schiller-Universität Jena.
J Pers Assess. 2021 May-Jun;103(3):392-405. doi: 10.1080/00223891.2020.1726936. Epub 2020 Mar 24.
We present two openly accessible databases related to the assessment of implicit motives using Picture Story Exercises (PSEs): (a) A database of 183,415 German sentences, nested in 26,389 stories provided by 4,570 participants, which have been coded by experts using Winter's coding system for the implicit affiliation/intimacy, achievement, and power motives, and (b) a database of 54 classic and new pictures which have been used as PSE stimuli. Updated picture norms are provided which can be used to select appropriate pictures for PSE applications. Based on an analysis of the relations between raw motive scores, word count, and sentence count, we give recommendations on how to control motive scores for story length, and validate the recommendation with a meta-analysis on gender differences in the implicit affiliation motive that replicates existing findings. We discuss to what extent the guiding principles of the story length correction can be generalized to other content coding systems for narrative material. Several potential applications of the databases are discussed, including (un)supervised machine learning of text content, psychometrics, and better reproducibility of PSE research.
我们呈现了两个与使用图片故事测验(PSE)评估内隐动机相关的公开数据库:(a)一个包含 183415 个德语句子的数据库,这些句子嵌套在 4570 名参与者提供的 26389 个故事中,这些句子已经由专家使用 Winter 的内隐亲和/亲密、成就和权力动机编码系统进行了编码;(b)一个包含 54 张经典和新图片的数据库,这些图片已被用作 PSE 刺激。我们提供了更新的图片规范,可以用于为 PSE 应用选择合适的图片。基于对原始动机得分、单词数和句子数之间关系的分析,我们就如何控制故事长度的动机得分提出了建议,并通过对隐性亲和动机的性别差异的元分析验证了这一建议,该元分析复制了现有发现。我们讨论了故事长度校正的指导原则在多大程度上可以推广到其他叙事材料的内容编码系统。讨论了这两个数据库的几个潜在应用,包括(无)监督机器学习文本内容、心理测量学和更好地重现 PSE 研究。