Suppr超能文献

构建临床相关风险模型:预测开始接受抗肿瘤治疗的患者发生潜在可预防的急性护理就诊的风险。

Building a Clinically Relevant Risk Model: Predicting Risk of a Potentially Preventable Acute Care Visit for Patients Starting Antineoplastic Treatment.

作者信息

Daly Bobby, Gorenshteyn Dmitriy, Nicholas Kevin J, Zervoudakis Alice, Sokolowski Stefania, Perry Claire E, Gazit Lior, Baldwin Medsker Abigail, Salvaggio Rori, Adams Lynn, Xiao Han, Chiu Yeneat O, Katzen Lauren L, Rozenshteyn Margarita, Reidy-Lagunes Diane L, Simon Brett A, Perchick Wendy, Wagner Isaac

机构信息

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.

Department of Strategy and Innovation, Memorial Sloan Kettering Cancer Center, New York, NY.

出版信息

JCO Clin Cancer Inform. 2020 Mar;4:275-289. doi: 10.1200/CCI.19.00104.

Abstract

PURPOSE

To create a risk prediction model that identifies patients at high risk for a potentially preventable acute care visit (PPACV).

PATIENTS AND METHODS

We developed a risk model that used electronic medical record data from initial visit to first antineoplastic administration for new patients at Memorial Sloan Kettering Cancer Center from January 2014 to September 2018. The final time-weighted least absolute shrinkage and selection operator model was chosen on the basis of clinical and statistical significance. The model was refined to predict risk on the basis of 270 clinically relevant data features spanning sociodemographics, malignancy and treatment characteristics, laboratory results, medical and social history, medications, and prior acute care encounters. The binary dependent variable was occurrence of a PPACV within the first 6 months of treatment. There were 8,067 observations for new-start antineoplastic therapy in our training set, 1,211 in the validation set, and 1,294 in the testing set.

RESULTS

A total of 3,727 patients experienced a PPACV within 6 months of treatment start. Specific features that determined risk were surfaced in a web application, riskExplorer, to enable clinician review of patient-specific risk. The positive predictive value of a PPACV among patients in the top quartile of model risk was 42%. This quartile accounted for 35% of patients with PPACVs and 51% of potentially preventable inpatient bed days. The model C-statistic was 0.65.

CONCLUSION

Our clinically relevant model identified the patients responsible for 35% of PPACVs and more than half of the inpatient beds used by the cohort. Additional research is needed to determine whether targeting these high-risk patients with symptom management interventions could improve care delivery by reducing PPACVs.

摘要

目的

创建一个风险预测模型,以识别有潜在可预防急性护理就诊(PPACV)高风险的患者。

患者与方法

我们开发了一个风险模型,该模型使用了2014年1月至2018年9月在纪念斯隆凯特琳癌症中心新患者从初次就诊到首次抗肿瘤给药的电子病历数据。根据临床和统计学意义选择了最终的时间加权最小绝对收缩和选择算子模型。该模型基于270个临床相关数据特征进行优化以预测风险,这些特征涵盖社会人口统计学、恶性肿瘤和治疗特征、实验室结果、医疗和社会病史、药物治疗以及既往急性护理就诊情况。二元因变量为治疗前6个月内PPACV的发生情况。我们的训练集中有8067例新开始抗肿瘤治疗的观察对象,验证集中有1211例,测试集中有1294例。

结果

共有3727例患者在治疗开始后6个月内经历了PPACV。确定风险的特定特征在一个网络应用程序riskExplorer中呈现,以便临床医生查看患者特定风险。模型风险处于前四分位数的患者中PPACV的阳性预测值为42%。该四分位数占PPACV患者的35%以及潜在可预防住院天数的51%。模型的C统计量为0.65。

结论

我们的临床相关模型识别出了占PPACV病例35%以及该队列使用的住院床位一半以上责任的患者。需要进一步研究以确定针对这些高风险患者进行症状管理干预是否可以通过减少PPACV来改善护理服务。

相似文献

引用本文的文献

本文引用的文献

2
Making Machine Learning Models Clinically Useful.让机器学习模型在临床上发挥作用。
JAMA. 2019 Oct 8;322(14):1351-1352. doi: 10.1001/jama.2019.10306.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验