Ahijado-Guzmán Rubén, Sánchez-Arribas Natalia, Martínez-Negro María, González-Rubio Guillermo, Santiago-Varela María, Pardo María, Piñeiro Antonio, López-Montero Iván, Junquera Elena, Guerrero-Martínez Andrés
Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Hospital Clínico Universitario de Santiago, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain.
Nanomaterials (Basel). 2020 Mar 24;10(3):590. doi: 10.3390/nano10030590.
Efficient plasmonic photothermal therapies (PPTTs) using non-harmful pulse laser irradiation at the near-infrared (NIR) are a highly sought goal in nanomedicine. These therapies rely on the use of plasmonic nanostructures to kill cancer cells while minimizing the applied laser power density. Cancer cells have an unsettled capacity to uptake, retain, release, and re-uptake gold nanoparticles, thus offering enormous versatility for research. In this work, we have studied such cell capabilities for nanoparticle trafficking and its impact on the effect of photothermal treatments. As our model system, we chose uveal (eye) melanoma cells, since laser-assisted eye surgery is routinely used to treat glaucoma and cataracts, or vision correction in refractive surgery. As nanostructure, we selected gold nanostars (Au NSs) due to their high photothermal efficiency at the near-infrared (NIR) region of the electromagnetic spectrum. We first investigated the photothermal effect on the basis of the dilution of Au NSs induced by cell division. Using this approach, we obtained high PPTT efficiency after several cell division cycles at an initial low Au NS concentration (pM regime). Subsequently, we evaluated the photothermal effect on account of cell division upon mixing Au NS-loaded and non-loaded cells. Upon such mixing, we observed trafficking of Au NSs between loaded and non-loaded cells, thus achieving effective PPTT after several division cycles under low irradiation conditions (below the maximum permissible exposure threshold of skin). Our study reveals the ability of uveal melanoma cells to release and re-uptake Au NSs that maintain their plasmonic photothermal properties throughout several cell division cycles and re-uptake. This approach may be readily extrapolated to real tissue and even to treat in situ the eye tumor itself. We believe that our method can potentially be used as co-therapy to disperse plasmonic gold nanostructures across affected tissues, thus increasing the effectiveness of classic PPTT.
在纳米医学领域,利用近红外(NIR)区域无害脉冲激光照射实现高效的等离子体光热疗法(PPTTs)是一个备受追捧的目标。这些疗法依赖于使用等离子体纳米结构来杀死癌细胞,同时将施加的激光功率密度降至最低。癌细胞具有摄取、保留、释放和重新摄取金纳米颗粒的不稳定能力,因此为研究提供了巨大的通用性。在这项工作中,我们研究了这种细胞对纳米颗粒运输的能力及其对光热治疗效果的影响。作为我们的模型系统,我们选择了葡萄膜(眼)黑色素瘤细胞,因为激光辅助眼部手术常用于治疗青光眼和白内障,或用于屈光手术中的视力矫正。作为纳米结构,我们选择了金纳米星(Au NSs),因为它们在电磁光谱的近红外(NIR)区域具有高光热效率。我们首先基于细胞分裂引起Au NSs稀释的基础上研究了光热效应。使用这种方法,我们在初始低Au NS浓度(pM范围)下经过几个细胞分裂周期后获得了高PPTT效率。随后,我们评估了混合加载和未加载Au NSs的细胞后细胞分裂对光热效应的影响。在这种混合后,我们观察到Au NSs在加载和未加载细胞之间的运输,从而在低辐照条件下(低于皮肤的最大允许暴露阈值)经过几个分裂周期后实现了有效的PPTT。我们的研究揭示了葡萄膜黑色素瘤细胞释放和重新摄取Au NSs的能力,这些Au NSs在几个细胞分裂周期和重新摄取过程中保持其等离子体光热特性。这种方法可以很容易地推广到实际组织,甚至用于原位治疗眼部肿瘤本身。我们相信我们的方法有可能用作联合疗法,将等离子体金纳米结构分散到受影响的组织中,从而提高经典PPTT的有效性。