Suppr超能文献

使用网格化人口和四叉树抽样单元来支持低收入环境中的调查样本设计。

Using gridded population and quadtree sampling units to support survey sample design in low-income settings.

机构信息

WorldPop, Geography and Environmental Science, University of Southampton, University Road, Southampton, UK.

Natural Resources Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq.

出版信息

Int J Health Geogr. 2020 Mar 26;19(1):10. doi: 10.1186/s12942-020-00205-5.

Abstract

BACKGROUND

Household surveys are the main source of demographic, health and socio-economic data in low- and middle-income countries (LMICs). To conduct such a survey, census population information mapped into enumeration areas (EAs) typically serves a sampling frame from which to generate a random sample. However, the use of census information to generate this sample frame can be problematic as in many LMIC contexts, such data are often outdated or incomplete, potentially introducing coverage issues into the sample frame. Increasingly, where census data are outdated or unavailable, modelled population datasets in the gridded form are being used to create household survey sampling frames.

METHODS

Previously this process was done by either sampling from a set of the uniform grid cells (UGC) which are then manually subdivided to achieve the desired population size, or by sampling very small grid cells then aggregating cells into larger units to achieve a minimum population per survey cluster. The former approach is time and resource-intensive as well as results in substantial heterogeneity in the output sampling units, while the latter can complicate the calculation of unbiased sampling weights. Using the context of Somalia, which has not had a full census since 1987, we implemented a quadtree algorithm for the first time to create a population sampling frame. The approach uses gridded population estimates and it is based on the idea of a quadtree decomposition in which an area successively subdivided into four equal size quadrants, until the content of each quadrant is homogenous.

RESULTS

The quadtree approach used here produced much more homogeneous sampling units than the UGC (1 × 1 km and 3 × 3 km) approach. At the national and pre-war regional scale, the standard deviation and coefficient of variation, as indications of homogeneity, were calculated for the output sampling units using quadtree and UGC 1 × 1 km and 3 × 3 km approaches to create the sampling frame and the results showed outstanding performance for quadtree approach.

CONCLUSION

Our approach reduces the manual burden of manually subdividing UGC into highly populated areas, while allowing for correct calculation of sampling weights. The algorithm produces a relatively homogenous population counts within the sampling units, reducing the variation in the weights and improving the precision of the resulting estimates. Furthermore, a protocol of creating approximately equal-sized blocks and using tablets for randomized selection of a household in each block mitigated potential selection bias by enumerators. The approach shows labour, time and cost-saving and points to the potential use in wider contexts.

摘要

背景

家庭调查是低收入和中等收入国家(LMICs)人口、健康和社会经济数据的主要来源。为了进行这样的调查,通常将人口普查的人口信息映射到普查区(EA)中,作为从其中生成随机样本的抽样框架。然而,使用人口普查信息来生成这个抽样框架可能会出现问题,因为在许多 LMIC 环境中,这些数据往往已经过时或不完整,可能会给抽样框架带来覆盖范围问题。越来越多的情况下,当人口普查数据过时或不可用时,以网格形式呈现的建模人口数据集被用于创建家庭调查抽样框架。

方法

以前,这个过程是通过从一组均匀网格单元(UGC)中进行采样来完成的,然后手动将这些单元进一步细分以达到所需的人口规模,或者通过对非常小的网格单元进行采样,然后将单元合并成更大的单元,以达到每个调查群集的最小人口数。前一种方法既耗时又耗资源,并且会导致输出抽样单元的实质性异质性,而后者可能会使无偏抽样权重的计算变得复杂。利用自 1987 年以来索马里没有进行过全面人口普查的情况,我们首次实施了四叉树算法来创建人口抽样框架。该方法使用网格化人口估计值,并基于四叉树分解的思想,其中一个区域连续划分为四个相等大小的象限,直到每个象限的内容都是同质的。

结果

这里使用的四叉树方法生成的抽样单元比 UGC(1×1 公里和 3×3 公里)方法更加均匀。在国家和战前地区规模上,使用四叉树和 UGC 1×1 公里和 3×3 公里方法为抽样框架生成输出抽样单元,计算了标准差和变异系数作为均匀性的指标,结果表明四叉树方法表现出色。

结论

我们的方法减少了手动将 UGC 细分为人口稠密地区的工作量,同时允许正确计算抽样权重。该算法在抽样单元内产生相对均匀的人口计数,减少了权重的变化,提高了结果估计的精度。此外,创建大约相等大小的块的协议,并在每个块中使用平板电脑随机选择一个家庭,减轻了普查员可能存在的选择偏差。该方法显示出节省劳动力、时间和成本的优势,并指出在更广泛的背景下具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3796/7099787/29f0082aa24e/12942_2020_205_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验