Suppr超能文献

使用电子健康记录定义重度抑郁症队列:基于ICD - 9编码和用药医嘱的多种表型

Defining Major Depressive Disorder Cohorts Using the EHR: Multiple Phenotypes Based on ICD-9 Codes and Medication Orders.

作者信息

Ingram Wendy Marie, Baker Anna M, Bauer Christopher R, Brown Jason P, Goes Fernando S, Larson Sharon, Zandi Peter P

机构信息

Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Department of Psychiatry, Geisinger Health System, Danville, Pennsylvania, USA.

出版信息

Neurol Psychiatry Brain Res. 2020 Jun;36:18-26. doi: 10.1016/j.npbr.2020.02.002. Epub 2020 Feb 21.

Abstract

BACKGROUND

Major Depressive Disorder (MDD) is one of the most common mental illnesses and a leading cause of disability worldwide. Electronic Health Records (EHR) allow researchers to conduct unprecedented large-scale observational studies investigating MDD, its disease development and its interaction with other health outcomes. While there exist methods to classify patients as clear cases or controls, given specific data requirements, there are presently no simple, generalizable, and validated methods to classify an entire patient population into varying groups of depression likelihood and severity.

METHODS

We have tested a simple, pragmatic electronic phenotype algorithm that classifies patients into one of five mutually exclusive, ordinal groups, varying in depression phenotype. Using data from an integrated health system on 278,026 patients from a 10-year study period we have tested the convergent validity of these constructs using measures of external validation, including patterns of psychiatric prescriptions, symptom severity, indicators of suicidality, comorbidity, mortality, health care utilization, and polygenic risk scores for MDD.

RESULTS

We found consistent patterns of increasing morbidity and/or adverse outcomes across the five groups, providing evidence for convergent validity.

LIMITATIONS

The study population is from a single rural integrated health system which is predominantly white, possibly limiting its generalizability.

CONCLUSION

Our study provides initial evidence that a simple algorithm, generalizable to most EHR data sets, provides categories with meaningful face and convergent validity that can be used for stratification of an entire patient population.

摘要

背景

重度抑郁症(MDD)是最常见的精神疾病之一,也是全球致残的主要原因。电子健康记录(EHR)使研究人员能够开展前所未有的大规模观察性研究,以调查MDD、其疾病发展过程以及它与其他健康结果的相互作用。虽然存在将患者分类为明确病例或对照的方法,但鉴于特定的数据要求,目前尚无简单、可推广且经过验证的方法将整个患者群体分类为不同抑郁可能性和严重程度的组。

方法

我们测试了一种简单、实用的电子表型算法,该算法将患者分为五个相互排斥的有序组之一,这些组在抑郁表型上有所不同。利用一个综合医疗系统在10年研究期间收集的278,026名患者的数据,我们使用外部验证指标,包括精神科处方模式、症状严重程度、自杀倾向指标、合并症、死亡率、医疗保健利用率以及MDD的多基因风险评分,来测试这些结构的收敛效度。

结果

我们在这五个组中发现了发病率和/或不良后果增加的一致模式,为收敛效度提供了证据。

局限性

研究人群来自一个主要为白人的单一农村综合医疗系统,这可能限制了其可推广性。

结论

我们的研究提供了初步证据,表明一种可推广到大多数EHR数据集的简单算法能够提供具有有意义的表面效度和收敛效度的类别,可用于对整个患者群体进行分层。

相似文献

6
Adult patient access to electronic health records.成年患者获取电子健康记录。
Cochrane Database Syst Rev. 2021 Feb 26;2(2):CD012707. doi: 10.1002/14651858.CD012707.pub2.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

2
An evolutionary concept analysis of depression in Black mothers.黑人生育母亲抑郁的进化概念分析。
Arch Psychiatr Nurs. 2024 Dec;53:9-16. doi: 10.1016/j.apnu.2024.08.001. Epub 2024 Aug 17.
7
Procedure for Organizing a Post-FDA-approval Evaluation of Antidepressants.组织抗抑郁药FDA批准后评估的程序
Cureus. 2022 Oct 3;14(10):e29884. doi: 10.7759/cureus.29884. eCollection 2022 Oct.

本文引用的文献

10
Managing smoking cessation.管理戒烟
CMAJ. 2016 Dec 6;188(17-18):E484-E492. doi: 10.1503/cmaj.151510. Epub 2016 Oct 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验