Suppr超能文献

哥伦比亚四家食品加工厂中细菌生物膜的宏基因组特征。

Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia.

机构信息

Colombian Institute of Tropical Medicine, CES University, Carrera 43A # 52 Sur 99, Sabaneta, Colombia.

Department of Research and Development, Zenú Food Industry, Carrera 64C # 104-3, Medellín, Colombia.

出版信息

Braz J Microbiol. 2020 Sep;51(3):1259-1267. doi: 10.1007/s42770-020-00260-x. Epub 2020 Mar 27.

Abstract

Bacteria inside biofilms are more persistent and resistant to stress conditions found in the production environment of food processing plants, thus representing a constant risk for product safety and quality. Therefore, the aim of this study was to characterize, using 16S rRNA sequencing, the bacterial communities from biofilms found in four food processing plants (P1, P2, P3, and P4). In total, 50 samples from these four processing plants were taken after cleaning and disinfection processes. Four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroides represented over 94% of the operational taxonomic units found across these four plants. A total of 102 families and 189 genera were identified. Two genera, Pseudomonas spp. and Acinetobacter spp., were the most frequently found (93.47%) across the four plants. In P1, Pseudomonas spp. and Lactobacillus spp. were the dominant genera, whereas Lactobacillus spp. and Streptococcus spp. were identified in P2. On the other hand, biofilms found in P3 and P4 mainly consisted of Pseudomonas spp. and Acinetobacter spp. Our results indicate that different bacterial genera of interest to the food industry due to their ability to form biofilm and affect food quality can coexist inside biofilms, and as such, persist in production environments, representing a constant risk for manufactured foods. In addition, the core microbiota identified across processing plants evaluated was probably influenced by type of food produced and cleaning and disinfection processes performed in each one of these.

摘要

生物膜内的细菌更具持久性,并且能够抵抗食品加工厂生产环境中发现的应激条件,因此对产品安全和质量构成持续风险。因此,本研究的目的是使用 16S rRNA 测序对来自四个食品加工厂(P1、P2、P3 和 P4)生物膜中的细菌群落进行特征描述。在清洗和消毒过程后,总共从这四个加工厂采集了 50 个样本。四个门:变形菌门、厚壁菌门、放线菌门和拟杆菌门代表了这四个工厂中发现的操作分类单位的 94%以上。共鉴定出 102 个科和 189 个属。两个属,假单胞菌属和不动杆菌属,在四个工厂中最常见(93.47%)。在 P1 中,假单胞菌属和乳杆菌属是优势属,而在 P2 中鉴定出乳杆菌属和链球菌属。另一方面,P3 和 P4 中的生物膜主要由假单胞菌属和不动杆菌属组成。我们的结果表明,由于形成生物膜和影响食品质量的能力而引起食品工业关注的不同细菌属可以共同存在于生物膜中,并因此在生产环境中持续存在,对加工食品构成持续风险。此外,评估的加工工厂之间的核心微生物组可能受到所生产的食品类型以及在每个工厂中进行的清洗和消毒过程的影响。

相似文献

1
Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia.
Braz J Microbiol. 2020 Sep;51(3):1259-1267. doi: 10.1007/s42770-020-00260-x. Epub 2020 Mar 27.
4
Disinfection in a salmon processing plant: Impact on bacterial communities and efficacy towards foodborne bacteria and biofilms.
Int J Food Microbiol. 2024 Nov 2;424:110853. doi: 10.1016/j.ijfoodmicro.2024.110853. Epub 2024 Aug 2.
5
Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment.
Int J Food Microbiol. 2016 Apr 16;223:33-40. doi: 10.1016/j.ijfoodmicro.2016.02.004. Epub 2016 Feb 6.
6
Dynamics of microbiota and antimicrobial resistance in on-farm dairy processing plants using metagenomic and culture-dependent approaches.
Int J Food Microbiol. 2024 Jun 2;417:110704. doi: 10.1016/j.ijfoodmicro.2024.110704. Epub 2024 Apr 14.
7
Shotgun-metagenomics reveals a highly diverse and communal microbial network present in the drains of three beef-processing plants.
Front Cell Infect Microbiol. 2023 Sep 8;13:1240138. doi: 10.3389/fcimb.2023.1240138. eCollection 2023.
8
Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces.
Appl Environ Microbiol. 2017 Aug 17;83(17). doi: 10.1128/AEM.01046-17. Print 2017 Sep 1.
9
Overlap of Spoilage-Associated Microbiota between Meat and the Meat Processing Environment in Small-Scale and Large-Scale Retail Distributions.
Appl Environ Microbiol. 2016 Jun 13;82(13):4045-54. doi: 10.1128/AEM.00793-16. Print 2016 Jul 1.
10
Identification of biofilm hotspots in a meat processing environment: Detection of spoilage bacteria in multi-species biofilms.
Int J Food Microbiol. 2020 Sep 2;328:108668. doi: 10.1016/j.ijfoodmicro.2020.108668. Epub 2020 May 20.

引用本文的文献

1
Can Metagenomic Analyses Be Used Effectively in Safe Food Production?
Food Sci Nutr. 2025 Aug 7;13(8):e70772. doi: 10.1002/fsn3.70772. eCollection 2025 Aug.
2
Repeated biocide treatments cause changes to the microbiome of a food industry floor drain biofilm model.
Front Microbiol. 2025 Mar 14;16:1542193. doi: 10.3389/fmicb.2025.1542193. eCollection 2025.
5
Shotgun-metagenomics reveals a highly diverse and communal microbial network present in the drains of three beef-processing plants.
Front Cell Infect Microbiol. 2023 Sep 8;13:1240138. doi: 10.3389/fcimb.2023.1240138. eCollection 2023.
6
High Disinfectant Tolerance in spp. Biofilm Aids the Survival of .
Microorganisms. 2023 May 27;11(6):1414. doi: 10.3390/microorganisms11061414.
7
Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions.
Foods. 2023 May 25;12(11):2140. doi: 10.3390/foods12112140.
9
Translational challenges and opportunities in biofilm science: a BRIEF for the future.
NPJ Biofilms Microbiomes. 2022 Aug 29;8(1):68. doi: 10.1038/s41522-022-00327-7.
10
Microbial Biofilms at Meat-Processing Plant as Possible Places of Bacteria Survival.
Microorganisms. 2022 Aug 6;10(8):1583. doi: 10.3390/microorganisms10081583.

本文引用的文献

1
Biofilm Formation and Control in Food Processing Facilities.
Compr Rev Food Sci Food Saf. 2003 Jan;2(1):22-32. doi: 10.1111/j.1541-4337.2003.tb00012.x.
2
Residential Bacteria on Surfaces in the Food Industry and Their Implications for Food Safety and Quality.
Compr Rev Food Sci Food Saf. 2017 Sep;16(5):1022-1041. doi: 10.1111/1541-4337.12283. Epub 2017 Aug 1.
3
Interactions between spoilage bacteria in tri-species biofilms developed under simulated meat processing conditions.
Food Microbiol. 2019 Sep;82:515-522. doi: 10.1016/j.fm.2019.03.022. Epub 2019 Mar 22.
4
Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability.
Food Microbiol. 2019 Sep;82:316-324. doi: 10.1016/j.fm.2019.02.015. Epub 2019 Mar 4.
5
Cooperation of lactic acid bacteria regulated by the AI-2/LuxS system involve in the biopreservation of refrigerated shrimp.
Food Res Int. 2019 Jun;120:679-687. doi: 10.1016/j.foodres.2018.11.025. Epub 2018 Nov 14.
6
The use of next generation sequencing for improving food safety: Translation into practice.
Food Microbiol. 2019 Jun;79:96-115. doi: 10.1016/j.fm.2018.11.005. Epub 2018 Nov 17.
7
Diversity and characterization of spoilage-associated psychrotrophs in food in cold chain.
Int J Food Microbiol. 2019 Feb 2;290:86-95. doi: 10.1016/j.ijfoodmicro.2018.09.026. Epub 2018 Oct 2.
9
Desiccation: An environmental and food industry stress that bacteria commonly face.
Food Microbiol. 2018 Feb;69:82-88. doi: 10.1016/j.fm.2017.07.017. Epub 2017 Jul 24.
10
Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces.
Appl Environ Microbiol. 2017 Aug 17;83(17). doi: 10.1128/AEM.01046-17. Print 2017 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验