Suppr超能文献

青光眼大鼠模型中影响视神经乳头生物力学的因素。

Factors affecting optic nerve head biomechanics in a rat model of glaucoma.

作者信息

Schwaner Stephen A, Feola Andrew J, Ethier C Ross

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

出版信息

J R Soc Interface. 2020 Apr;17(165):20190695. doi: 10.1098/rsif.2019.0695. Epub 2020 Apr 1.

Abstract

Glaucoma is the leading cause of irreversible blindness and is characterized by the death of retinal ganglion cells, which carry vision information from the retina to the brain. Although it is well accepted that biomechanics is an important part of the glaucomatous disease process, the mechanisms by which biomechanical insult, usually due to elevated intraocular pressure (IOP), leads to retinal ganglion cell death are not understood. Rat models of glaucoma afford an opportunity for learning more about these mechanisms, but the biomechanics of the rat optic nerve head (ONH), a primary region of damage in glaucoma, are only just beginning to be characterized. In a previous study, we built finite-element models with individual-specific rat ONH geometries. Here, we developed a parametrized model of the rat ONH and used it to perform a sensitivity study to determine the influence that six geometric parameters and 13 tissue material properties have on rat optic nerve biomechanical strains due to IOP elevation. Strain magnitudes and patterns in the parametrized model generally matched those from individual-specific models, suggesting that the parametrized model sufficiently approximated rat ONH anatomy. Similar to previous studies in human eyes, we found that scleral properties were highly influential: the six parameters with highest influence on optic nerve strains were optic nerve stiffness, IOP, scleral thickness, the degree of alignment of scleral collagen fibres, scleral ground substance stiffness and the scleral collagen fibre uncrimping coefficient. We conclude that a parametrized modelling strategy is an efficient approach that allows insight into rat ONH biomechanics. Further, scleral properties are important influences on rat ONH biomechanics, and additional efforts should be made to better characterize rat scleral collagen fibre organization.

摘要

青光眼是不可逆性失明的主要原因,其特征是视网膜神经节细胞死亡,这些细胞将视觉信息从视网膜传递至大脑。尽管生物力学是青光眼疾病进程的重要组成部分这一观点已被广泛接受,但生物力学损伤(通常由于眼压升高)导致视网膜神经节细胞死亡的机制仍不清楚。青光眼大鼠模型为深入了解这些机制提供了契机,但青光眼主要损伤部位大鼠视神经乳头(ONH)的生物力学特性才刚刚开始被研究。在之前的一项研究中,我们构建了具有个体特异性大鼠ONH几何形状的有限元模型。在此,我们开发了一种大鼠ONH参数化模型,并利用它进行敏感性研究,以确定六个几何参数和13种组织材料特性对眼压升高引起的大鼠视神经生物力学应变的影响。参数化模型中的应变大小和模式与个体特异性模型的应变大小和模式总体匹配,这表明参数化模型充分近似了大鼠ONH的解剖结构。与之前对人眼的研究类似,我们发现巩膜特性具有高度影响力:对视神经应变影响最大的六个参数分别是视神经刚度、眼压、巩膜厚度、巩膜胶原纤维排列程度、巩膜基质刚度和巩膜胶原纤维解卷曲系数。我们得出结论,参数化建模策略是一种有效的方法,能够深入了解大鼠ONH的生物力学特性。此外,巩膜特性对大鼠ONH生物力学有重要影响,应进一步努力更好地表征大鼠巩膜胶原纤维的组织结构。

相似文献

4
Factors influencing optic nerve head biomechanics.影响视神经乳头生物力学的因素。
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189-99. doi: 10.1167/iovs.05-0541.
9
Fibrous finite element modeling of the optic nerve head region.视神经头部区域的纤维有限元建模。
Acta Biomater. 2024 Feb;175:123-137. doi: 10.1016/j.actbio.2023.12.034. Epub 2023 Dec 24.

引用本文的文献

4
Fibrous finite element modeling of the optic nerve head region.视神经头部区域的纤维有限元建模。
Acta Biomater. 2024 Feb;175:123-137. doi: 10.1016/j.actbio.2023.12.034. Epub 2023 Dec 24.
10
Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma.绝经是青光眼的性别特异性危险因素的证据。
Cell Mol Neurobiol. 2023 Jan;43(1):79-97. doi: 10.1007/s10571-021-01179-z. Epub 2022 Jan 4.

本文引用的文献

1
Sustained scleral stiffening in rats after a single genipin treatment.单次京尼平处理后大鼠巩膜持续硬化。
J R Soc Interface. 2019 Oct 31;16(159):20190427. doi: 10.1098/rsif.2019.0427. Epub 2019 Oct 16.
5
The Impact of Choroidal Swelling on Optic Nerve Head Deformation.脉络膜肿胀对视神经头变形的影响。
Invest Ophthalmol Vis Sci. 2018 Aug 1;59(10):4172-4181. doi: 10.1167/iovs.18-24463.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验