Suppr超能文献

一种稳健的效应量指标。

A Robust Effect Size Index.

机构信息

Department of Biostatistics, Vanderbilt University, 2525 West End Ave., #1136, Nashville, TN, 37203, USA.

出版信息

Psychometrika. 2020 Mar;85(1):232-246. doi: 10.1007/s11336-020-09698-2. Epub 2020 Mar 30.

Abstract

Effect size indices are useful tools in study design and reporting because they are unitless measures of association strength that do not depend on sample size. Existing effect size indices are developed for particular parametric models or population parameters. Here, we propose a robust effect size index based on M-estimators. This approach yields an index that is very generalizable because it is unitless across a wide range of models. We demonstrate that the new index is a function of Cohen's d, [Formula: see text], and standardized log odds ratio when each of the parametric models is correctly specified. We show that existing effect size estimators are biased when the parametric models are incorrect (e.g., under unknown heteroskedasticity). We provide simple formulas to compute power and sample size and use simulations to assess the bias and standard error of the effect size estimator in finite samples. Because the new index is invariant across models, it has the potential to make communication and comprehension of effect size uniform across the behavioral sciences.

摘要

效应量指标是研究设计和报告中的有用工具,因为它们是与样本大小无关的、无量纲的关联强度度量。现有的效应量指标是为特定的参数模型或总体参数开发的。在这里,我们提出了一种基于 M 估计的稳健效应量指标。这种方法产生的指标具有很强的通用性,因为它在广泛的模型范围内都是无量纲的。我们证明,当每个参数模型都被正确指定时,新的指标是 Cohen's d、[公式:见正文]和标准化对数优势比的函数。我们表明,当参数模型不正确时(例如,在未知的异方差性下),现有的效应量估计器存在偏差。我们提供了计算功效和样本量的简单公式,并使用模拟来评估有限样本中效应量估计器的偏差和标准误差。由于新的指标在模型之间是不变的,因此它有可能使行为科学领域的效应量的沟通和理解变得统一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b6/7186256/cfbe2846ee76/11336_2020_9698_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验