Suppr超能文献

利用具有区域形态学的多重图像标记(MILWRM)对空间组学数据中的共识组织域进行检测。

Consensus tissue domain detection in spatial omics data using multiplex image labeling with regional morphology (MILWRM).

机构信息

Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.

出版信息

Commun Biol. 2024 Oct 30;7(1):1295. doi: 10.1038/s42003-024-06281-8.

Abstract

Spatially resolved molecular assays provide high dimensional genetic, transcriptomic, proteomic, and epigenetic information in situ and at various resolutions. Pairing these data across modalities with histological features enables powerful studies of tissue pathology in the context of an intact microenvironment and tissue structure. Increasing dimensions across molecular analytes and samples require new data science approaches to functionally annotate spatially resolved molecular data. A specific challenge is data-driven cross-sample domain detection that allows for analysis within and between consensus tissue compartments across high volumes of multiplex datasets stemming from tissue atlasing efforts. Here, we present MILWRM (multiplex image labeling with regional morphology)-a Python package for rapid, multi-scale tissue domain detection and annotation at the image- or spot-level. We demonstrate MILWRM's utility in identifying histologically distinct compartments in human colonic polyps, lymph nodes, mouse kidney, and mouse brain slices through spatially-informed clustering in two different spatial data modalities from different platforms. We used tissue domains detected in human colonic polyps to elucidate the molecular distinction between polyp subtypes, and explored the ability of MILWRM to identify anatomical regions of the brain tissue and their respective distinct molecular profiles.

摘要

空间分辨分子分析在原位和各种分辨率下提供高维的遗传、转录组、蛋白质组和表观遗传信息。将这些数据与组织学特征进行模态配对,使我们能够在完整的微环境和组织结构背景下对组织病理学进行强大的研究。随着分子分析物和样本的维度不断增加,需要新的数据科学方法来对空间分辨分子数据进行功能注释。一个特定的挑战是数据驱动的跨样本域检测,它允许在来自组织图谱绘制工作的大量多路数据集内和之间分析一致的组织隔室。在这里,我们提出了 MILWRM(基于区域形态的多重图像标记)-一个用于在图像或斑点水平上快速进行多尺度组织域检测和注释的 Python 包。我们通过来自不同平台的两种不同空间数据模式的空间信息聚类,证明了 MILWRM 在识别人类结肠息肉、淋巴结、小鼠肾脏和小鼠脑切片中具有不同组织学特征的隔室方面的实用性。我们使用在人类结肠息肉中检测到的组织域来阐明息肉亚型之间的分子差异,并探索了 MILWRM 识别脑组织解剖区域及其各自独特分子特征的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de5a/11525554/95b3d5550b46/42003_2024_6281_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验