Am J Epidemiol. 2021 Aug 1;190(8):1643-1651. doi: 10.1093/aje/kwab024.
We use simple examples to show how the bias and standard error of an estimator depend in part on the type of estimator chosen from among parametric, nonparametric, and semiparametric candidates. We estimated the cumulative distribution function in the presence of missing data with and without an auxiliary variable. Simulation results mirrored theoretical expectations about the bias and precision of candidate estimators. Specifically, parametric maximum likelihood estimators performed best but must be "omnisciently" correctly specified. An augmented inverse probability-weighted (IPW) semiparametric estimator performed best among candidate estimators that were not omnisciently correct. In one setting, the augmented IPW estimator reduced the standard error by nearly 30%, compared with a standard Horvitz-Thompson IPW estimator; such a standard error reduction is equivalent to doubling the sample size. These results highlight the gains and losses that can be incurred when model assumptions are made in any analysis.
我们使用简单的例子来说明估计量的偏差和标准误差在一定程度上取决于从参数、非参数和半参数候选者中选择的估计量类型。我们在有和没有辅助变量的情况下,对缺失数据的累积分布函数进行了估计。模拟结果反映了关于候选估计量的偏差和精度的理论预期。具体来说,参数最大似然估计量表现最好,但必须“无所不知地”正确指定。在非无所不知正确的候选估计量中,增广逆概率加权 (IPW) 半参数估计量表现最好。在一种情况下,与标准的霍维茨-汤普森 IPW 估计量相比,增广 IPW 估计量将标准误差降低了近 30%;这种标准误差的降低相当于将样本量增加一倍。这些结果突出了在任何分析中进行模型假设时可能产生的得失。