Garg Raghav, Roman Daniel San, Wang Yingqiao, Cohen-Karni Devora, Cohen-Karni Tzahi
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
Preclinical education biochemistry, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania 15601, USA.
Biophys Rev (Melville). 2021 Dec;2(4):041304. doi: 10.1063/5.0073870. Epub 2021 Dec 29.
The ability to manipulate the electrophysiology of electrically active cells and tissues has enabled a deeper understanding of healthy and diseased tissue states. This has primarily been achieved via input/output (I/O) bioelectronics that interface engineered materials with biological entities. Stable long-term application of conventional I/O bioelectronics advances as materials and processing techniques develop. Recent advancements have facilitated the development of graphene-based I/O bioelectronics with a wide variety of functional characteristics. Engineering the structural, physical, and chemical properties of graphene nanostructures and integration with modern microelectronics have enabled breakthrough high-density electrophysiological investigations. Here, we review recent advancements in 2D and 3D graphene-based I/O bioelectronics and highlight electrophysiological studies facilitated by these emerging platforms. Challenges and present potential breakthroughs that can be addressed via graphene bioelectronics are discussed. We emphasize the need for a multidisciplinary approach across materials science, micro-fabrication, and bioengineering to develop the next generation of I/O bioelectronics.
对电活性细胞和组织的电生理学进行操控的能力,使人们能够更深入地了解健康和患病组织状态。这主要是通过将工程材料与生物实体相连接的输入/输出(I/O)生物电子学来实现的。随着材料和加工技术的发展,传统I/O生物电子学在长期稳定应用方面取得了进展。最近的进展推动了具有各种功能特性的基于石墨烯的I/O生物电子学的发展。对石墨烯纳米结构的结构、物理和化学性质进行工程设计,并与现代微电子学集成,实现了突破性的高密度电生理研究。在这里,我们回顾了基于二维和三维石墨烯的I/O生物电子学的最新进展,并强调了这些新兴平台所推动的电生理研究。讨论了通过石墨烯生物电子学可以解决的挑战和当前潜在的突破。我们强调需要跨材料科学、微制造和生物工程的多学科方法来开发下一代I/O生物电子学。