Functional Nanomaterials & Devices Laboratory, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India.
Micro/Nano Technology Centre (MNTC), Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
Mikrochim Acta. 2020 Mar 31;187(4):253. doi: 10.1007/s00604-020-4182-2.
This review (with 200 references) summarises the state of the art of gas and vapour sensors based on the use of vanadium oxide (VO; with V occurring in various valencies) nanostructures. Following an introduction that covers the discussion of VO and their stable forms, the first large section covers experimental techniques employed for preparing VO nanostructures, with methods such as precipitation, hydrothermal synthesis, electrospinning, polyol techniques, laser deposition, and magnetron sputtering. The next section deals with VO-based sensors for oxidising gases such as nitrogen dioxide, carbon dioxide, oxygen, and ozone. We then discuss sensors for reducing gases and vapour, such as various alcohols, formaldehyde, hydrogen, methane, various amines, hydrogen sulphide, LPG, and neutral gases and vapours such as helium and humidity. An overview of the wealth of materials, methods, and sensing characteristics such as sensor response, analytical ranges, and operational temperatures is presented in Tables. The final section briefs the VO-based flexible sensors, followed by a concluding section that summarises the current status and challenges, and gives an outlook on potential future perspectives. Graphical abstract The state of the art of vanadium oxide nanostructures in gas/vapour sensing has been discussed in this work.
这篇综述(引用了 200 篇参考文献)总结了基于氧化钒(VO;其中 V 具有多种价态)纳米结构的气体和蒸气传感器的最新技术。引言部分讨论了 VO 及其稳定形式,接下来的第一大部分介绍了用于制备 VO 纳米结构的实验技术,包括沉淀、水热合成、静电纺丝、多元醇技术、激光沉积和磁控溅射等方法。下一部分讨论了用于氧化气体(如二氧化氮、二氧化碳、氧气和臭氧)的基于 VO 的传感器。然后我们讨论了用于还原气体和蒸气的传感器,如各种醇、甲醛、氢气、甲烷、各种胺、硫化氢、液化石油气以及氦气和湿度等中性气体和蒸气。表中呈现了丰富的材料、方法和传感特性(如传感器响应、分析范围和工作温度)概述。最后一部分简要介绍了基于 VO 的柔性传感器,随后在结论部分总结了当前的现状和挑战,并展望了未来的潜在前景。