Suppr超能文献

基于深度学习神经网络和分诊文本数据预测儿科急诊患者入院。

Prediction of admission in pediatric emergency department with deep neural networks and triage textual data.

机构信息

Data Science Team, Itaú Unibanco, Praça Alfredo Egydio de Souza Aranha, 100, torre WMS, 10th floor, São Paulo - SP, 04344-902, Brazil.

Fundação Getúlio Vargas (FGV/EAESP), Rua Itapeva, 474/9th floor, São Paulo - SP, 01332-000, Brazil.

出版信息

Neural Netw. 2020 Jun;126:170-177. doi: 10.1016/j.neunet.2020.03.012. Epub 2020 Mar 18.

Abstract

Emergency department (ED) overcrowding is a global condition that severely worsens attention to patients, increases clinical risks and affects hospital cost management. A correct and early prediction of ED's admission is of high value and a motivation to adopt machine learning models. However, several of these studies do not consider data collected in textual form, which is a feature set that contains detailed information about patients and presents great potential for medical health care improvement. To this end, we propose and compare predictive models for admission that use both structured and unstructured data available at triage time. In total, our dataset comprised 499,853 pediatric ED's presentations (with an admission rate of 5.76%) of patients with age up to 18 years old observed over 3.5 years. Our best model consists of a 2-stage architecture with a deep neural network (DNN) to extract information from textual data followed by a gradient boosting classifier. This combined model achieved a value of 0.892 for the Area Under the Curve (AUC) in the test data. We highlight the importance of DNN-based text processing for better prediction, since the absence of text features resulted in AUC reduction of approximately two percentage points. Also, the feature importance of text was higher than that of the Manchester Triage System (MTS), which is a widely used risk classification protocol. These results suggest that activations from a trained DNN should be used in transfer learning setups in future studies.

摘要

急诊科(ED)人满为患是一种全球性现象,严重影响了对患者的关注,增加了临床风险,并影响了医院的成本管理。正确且及早预测 ED 的收治情况具有很高的价值,并且可以激励人们采用机器学习模型。然而,其中一些研究并未考虑以文本形式收集的数据,而这是一个包含有关患者详细信息的特征集,具有改善医疗保健的巨大潜力。为此,我们提出并比较了在分诊时同时使用结构化和非结构化数据的入院预测模型。总的来说,我们的数据集包含了 3.5 年内观察到的 499853 例年龄在 18 岁以下的儿科 ED 就诊(入院率为 5.76%)。我们的最佳模型由一个 2 阶段架构组成,其中包括一个从文本数据中提取信息的深度神经网络(DNN),然后是一个梯度提升分类器。在测试数据中,该组合模型的曲线下面积(AUC)值达到了 0.892。我们强调了基于 DNN 的文本处理对更好的预测的重要性,因为缺少文本特征会导致 AUC 降低约两个百分点。此外,文本的特征重要性高于广泛使用的风险分类协议曼彻斯特分诊系统(MTS)。这些结果表明,在未来的研究中,应该在迁移学习设置中使用经过训练的 DNN 的激活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验