Suppr超能文献

非结构化临床评估的自动化分析可改善急诊科分诊表现:一项回顾性深度学习分析。

Automated analysis of unstructured clinical assessments improves emergency department triage performance: A retrospective deep learning analysis.

作者信息

Sax Dana R, Warton E Margaret, Sofrygin Oleg, Mark Dustin G, Ballard Dustin W, Kene Mamata V, Vinson David R, Reed Mary E

机构信息

Department of Emergency Medicine Kaiser East Bay and Kaiser Permanente Northern California Division of Research Oakland California USA.

Kaiser Permanente Northern California Division of Research Oakland California USA.

出版信息

J Am Coll Emerg Physicians Open. 2023 Jul 12;4(4):e13003. doi: 10.1002/emp2.13003. eCollection 2023 Aug.

Abstract

OBJECTIVES

Efficient and accurate emergency department (ED) triage is critical to prioritize the sickest patients and manage department flow. We explored the use of electronic health record data and advanced predictive analytics to improve triage performance.

METHODS

Using a data set of over 5 million ED encounters of patients 18 years and older across 21 EDs from 2016 to 2020, we derived triage models using deep learning to predict 2 outcomes: hospitalization (primary outcome) and fast-track eligibility (exploratory outcome), defined as ED discharge with <2 resource types used (eg, laboratory or imaging studies) and no critical events (eg, resuscitative medications use or intensive care unit [ICU] admission). We report area under the receiver operator characteristic curve (AUC) and 95% confidence intervals (CI) for models using (1) triage variables alone (demographics and vital signs), (2) triage nurse clinical assessment alone (unstructured notes), and (3) triage variables plus clinical assessment for each prediction target.

RESULTS

We found 12.7% of patients were hospitalized ( = 673,659) and 37.0% were fast-track eligible ( = 1,966,615). The AUC was lowest for models using triage variables alone: AUC 0.77 (95% CI 0.77-0.78) and 0.70 (95% CI 0.70-0.71) for hospitalization and fast-track eligibility, respectively, and highest for models incorporating clinical assessment with triage variables for both hospitalization and fast-track eligibility: AUC 0.87 (95% CI 0.87-0.87) for both prediction targets.

CONCLUSION

Our findings highlight the potential to use advanced predictive analytics to accurately predict key ED triage outcomes. Predictive accuracy was optimized when clinical assessments were added to models using simple structured variables alone.

摘要

目的

高效且准确的急诊科分诊对于确定病情最严重的患者优先级以及管理科室流程至关重要。我们探索了使用电子健康记录数据和先进的预测分析来改善分诊表现。

方法

利用2016年至2020年期间来自21个急诊科的超过500万例18岁及以上患者的急诊科就诊数据集,我们使用深度学习得出分诊模型,以预测两个结果:住院治疗(主要结果)和快速通道资格(探索性结果),快速通道资格定义为使用不超过2种资源类型(如实验室检查或影像学检查)且无危急事件(如使用复苏药物或入住重症监护病房[ICU])的急诊科出院。我们报告了使用以下方法构建的模型的受试者操作特征曲线下面积(AUC)和95%置信区间(CI):(1)仅使用分诊变量(人口统计学和生命体征);(2)仅使用分诊护士的临床评估(非结构化记录);(3)针对每个预测目标,使用分诊变量加临床评估。

结果

我们发现12.7%的患者住院治疗(n = 673,659),37.0%的患者符合快速通道资格(n = 1,966,615)。仅使用分诊变量的模型的AUC最低:住院治疗和快速通道资格的AUC分别为0.77(95% CI 0.77 - 0.78)和0.70(95% CI 0.70 - 0.71),而对于住院治疗和快速通道资格,将临床评估与分诊变量相结合的模型的AUC最高:两个预测目标的AUC均为0.87(95% CI 0.87 - 0.87)。

结论

我们的研究结果凸显了使用先进的预测分析来准确预测急诊科关键分诊结果的潜力。当仅使用简单结构化变量的模型中加入临床评估时,预测准确性得到了优化。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验