Liu Xiwang, Zhang Guojun, Li Jie, Shi Guangluo, Zhou Mingyang, Huang Boqiang, Tang Yajuan, Song Xiaohong, Yang Weifeng
Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China.
Department of Mathematics, College of Science, Shantou University, Shantou, Guangdong 515063, China.
Phys Rev Lett. 2020 Mar 20;124(11):113202. doi: 10.1103/PhysRevLett.124.113202.
Feynman's path integral approach is to sum over all possible spatiotemporal paths to reproduce the quantum wave function and the corresponding time evolution, which has enormous potential to reveal quantum processes in the classical view. However, the complete characterization of the quantum wave function with infinite paths is a formidable challenge, which greatly limits the application potential, especially in the strong-field physics and attosecond science. Instead of brute-force tracking every path one by one, here we propose a deep-learning-performed strong-field Feynman's formulation with a preclassification scheme that can predict directly the final results only with data of initial conditions, so as to attack unsurmountable tasks by existing strong-field methods and explore new physics. Our results build a bridge between deep learning and strong-field physics through Feynman's path integral, which would boost applications of deep learning to study the ultrafast time-dependent dynamics in strong-field physics and attosecond science and shed new light on the quantum-classical correspondence.
费曼路径积分方法是对所有可能的时空路径进行求和,以重现量子波函数及其相应的时间演化,这在经典视角下揭示量子过程具有巨大潜力。然而,用无限多条路径来完整表征量子波函数是一项艰巨挑战,这极大地限制了其应用潜力,尤其是在强场物理和阿秒科学领域。我们并非逐个路径进行蛮力追踪,而是提出一种采用预分类方案的深度学习执行的强场费曼公式,该方案仅利用初始条件数据就能直接预测最终结果,从而攻克现有强场方法无法解决的任务并探索新物理。我们的结果通过费曼路径积分在深度学习与强场物理之间架起了一座桥梁,这将推动深度学习在研究强场物理和阿秒科学中超快时间相关动力学方面的应用,并为量子 - 经典对应关系带来新的启示。