Indian Institute of Science Education and Research, Pashan, Pune 411008, India.
School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
Bioinformatics. 2020 Jun 1;36(12):3739-3748. doi: 10.1093/bioinformatics/btaa207.
The elucidation of all inter-protein interactions would significantly enhance our knowledge of cellular processes at a molecular level. Given the enormity of the problem, the expenses and limitations of experimental methods, it is imperative that this problem is tackled computationally. In silico predictions of protein interactions entail sampling different conformations of the purported complex and then scoring these to assess for interaction viability. In this study, we have devised a new scheme for scoring protein-protein interactions.
Our method, PIZSA (Protein Interaction Z-Score Assessment), is a binary classification scheme for identification of native protein quaternary assemblies (binders/nonbinders) based on statistical potentials. The scoring scheme incorporates residue-residue contact preference on the interface with per residue-pair atomic contributions and accounts for clashes. PIZSA can accurately discriminate between native and non-native structural conformations from protein docking experiments and outperform other contact-based potential scoring functions. The method has been extensively benchmarked and is among the top 6 methods, outperforming 31 other statistical, physics based and machine learning scoring schemes. The PIZSA potentials can also distinguish crystallization artifacts from biological interactions.
PIZSA is implemented as a web server at http://cospi.iiserpune.ac.in/pizsa and can be downloaded as a standalone package from http://cospi.iiserpune.ac.in/pizsa/Download/Download.html.
Supplementary data are available at Bioinformatics online.
阐明所有蛋白质之间的相互作用将极大地增强我们在分子水平上对细胞过程的认识。鉴于问题的巨大性、实验方法的费用和局限性,必须通过计算来解决这个问题。蛋白质相互作用的计算预测需要对假定的复合物的不同构象进行采样,然后对这些构象进行评分,以评估相互作用的可行性。在这项研究中,我们设计了一种新的蛋白质-蛋白质相互作用评分方案。
我们的方法,PIZSA(蛋白质相互作用 Z 评分评估),是一种基于统计势能的识别天然蛋白质四级组装(结合剂/非结合剂)的二进制分类方案。该评分方案将残基-残基界面接触偏好与每个残基对的原子贡献相结合,并考虑了冲突。PIZSA 可以准确地区分蛋白质对接实验中的天然和非天然结构构象,并优于其他基于接触的势能评分函数。该方法已经进行了广泛的基准测试,是前 6 种方法之一,优于 31 种其他统计、物理和机器学习评分方案。PIZSA 势能还可以区分结晶伪影和生物相互作用。
PIZSA 作为一个网络服务器在 http://cospi.iiserpune.ac.in/pizsa 上实现,并可以从 http://cospi.iiserpune.ac.in/pizsa/Download/Download.html 作为独立软件包下载。
补充数据可在 Bioinformatics 在线获得。