Suppr超能文献

一种基于知识的评分函数,用于评估蛋白质的四级相互作用。

A knowledge-based scoring function to assess quaternary associations of proteins.

机构信息

Indian Institute of Science Education and Research, Pashan, Pune 411008, India.

School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.

出版信息

Bioinformatics. 2020 Jun 1;36(12):3739-3748. doi: 10.1093/bioinformatics/btaa207.

Abstract

MOTIVATION

The elucidation of all inter-protein interactions would significantly enhance our knowledge of cellular processes at a molecular level. Given the enormity of the problem, the expenses and limitations of experimental methods, it is imperative that this problem is tackled computationally. In silico predictions of protein interactions entail sampling different conformations of the purported complex and then scoring these to assess for interaction viability. In this study, we have devised a new scheme for scoring protein-protein interactions.

RESULTS

Our method, PIZSA (Protein Interaction Z-Score Assessment), is a binary classification scheme for identification of native protein quaternary assemblies (binders/nonbinders) based on statistical potentials. The scoring scheme incorporates residue-residue contact preference on the interface with per residue-pair atomic contributions and accounts for clashes. PIZSA can accurately discriminate between native and non-native structural conformations from protein docking experiments and outperform other contact-based potential scoring functions. The method has been extensively benchmarked and is among the top 6 methods, outperforming 31 other statistical, physics based and machine learning scoring schemes. The PIZSA potentials can also distinguish crystallization artifacts from biological interactions.

AVAILABILITY AND IMPLEMENTATION

PIZSA is implemented as a web server at http://cospi.iiserpune.ac.in/pizsa and can be downloaded as a standalone package from http://cospi.iiserpune.ac.in/pizsa/Download/Download.html.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

阐明所有蛋白质之间的相互作用将极大地增强我们在分子水平上对细胞过程的认识。鉴于问题的巨大性、实验方法的费用和局限性,必须通过计算来解决这个问题。蛋白质相互作用的计算预测需要对假定的复合物的不同构象进行采样,然后对这些构象进行评分,以评估相互作用的可行性。在这项研究中,我们设计了一种新的蛋白质-蛋白质相互作用评分方案。

结果

我们的方法,PIZSA(蛋白质相互作用 Z 评分评估),是一种基于统计势能的识别天然蛋白质四级组装(结合剂/非结合剂)的二进制分类方案。该评分方案将残基-残基界面接触偏好与每个残基对的原子贡献相结合,并考虑了冲突。PIZSA 可以准确地区分蛋白质对接实验中的天然和非天然结构构象,并优于其他基于接触的势能评分函数。该方法已经进行了广泛的基准测试,是前 6 种方法之一,优于 31 种其他统计、物理和机器学习评分方案。PIZSA 势能还可以区分结晶伪影和生物相互作用。

可用性和实现

PIZSA 作为一个网络服务器在 http://cospi.iiserpune.ac.in/pizsa 上实现,并可以从 http://cospi.iiserpune.ac.in/pizsa/Download/Download.html 作为独立软件包下载。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

7
A combinatorial scoring function for protein-RNA docking.一种用于蛋白质-RNA对接的组合评分函数。
Proteins. 2017 Apr;85(4):741-752. doi: 10.1002/prot.25253. Epub 2017 Feb 9.

本文引用的文献

4
Computational modeling of protein assemblies.蛋白质组装的计算建模。
Curr Opin Struct Biol. 2017 Jun;44:179-189. doi: 10.1016/j.sbi.2017.04.006. Epub 2017 May 12.
6
DockQ: A Quality Measure for Protein-Protein Docking Models.DockQ:蛋白质-蛋白质对接模型的质量度量
PLoS One. 2016 Aug 25;11(8):e0161879. doi: 10.1371/journal.pone.0161879. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验