Xuan Yue, Dvir Danny, Wang Zhongjie, Ye Jian, Guccione Julius M, Ge Liang, Tseng Elaine E
Division of Cardiothoracic Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA.
Division of Cardiology, University of Washington, Seattle, WA, USA.
Interact Cardiovasc Thorac Surg. 2020 Jun 1;30(6):879-886. doi: 10.1093/icvts/ivaa037.
Transcatheter aortic valve replacement (TAVR) is established therapy for severe aortic stenosis patients with intermediate-, high- and prohibitive-risk for surgery. A significant challenge when expanding TAVR to low-risk and younger patients is the unknown long-term durability. High leaflet stresses have been associated with surgical bioprosthetic valve degeneration. In this study, we examined the impact of changes in valve design across 3 generations of same-sized TAVR devices on stent and leaflet stresses.
The 26-mm Edwards SAPIEN, 23, 26 and 29 mm SAPIEN XT (XT) and 26 mm SAPIEN 3 (S3) (n = 1 each) underwent micro-computed tomography (micro-CT) scanning. Dynamic finite element computational simulations of 23-26 mm SAPIEN, 23-29 mm XT and 23-29 mm S3 were performed with physiological loading and micro-CT or scaled geometries.
Peak stresses were concentrated in the commissure area and along the bottom of the suture, representing areas most likely to develop structural valve degeneration across TAVR generations. Latest-generation S3 showed greatest 99th percentile principal stress on commissural leaflets for 26 and 29 mm, and increased stresses over XT for 23 mm. Percentage of higher stress areas within the leaflets steadily increased across generations, 3.8%, 3.9% and 5.7%, respectively, for 26 mm SAPIEN, XT and S3 with similar trend for 29-mm valves.
Using computational simulations based on high-fidelity modelling of balloon-expandable TAVRs, our study demonstrated that maximum stress areas existed in similar leaflet locations across SAPIEN generations, while the latest model S3 had the highest magnitude for both 26- and 29-mm valves. S3 also had the largest area of higher stresses than other generations, which would be prone to degeneration. Our study coupled with future long-term clinical outcomes >10 years will provide insight on biomechanics of TAVR degeneration.
经导管主动脉瓣置换术(TAVR)是治疗手术风险为中、高及禁忌的严重主动脉瓣狭窄患者的既定疗法。将TAVR扩展至低风险和年轻患者时面临的一个重大挑战是其长期耐久性未知。较高的瓣叶应力与外科生物瓣膜退变有关。在本研究中,我们研究了三代相同尺寸的TAVR装置瓣膜设计变化对支架和瓣叶应力的影响。
对26毫米的爱德华SAPIEN、23、26和29毫米的SAPIEN XT(XT)以及26毫米的SAPIEN 3(S3)(各n = 1)进行微计算机断层扫描(micro-CT)。对23 - 26毫米的SAPIEN、23 - 29毫米的XT和23 - 29毫米的S3进行动态有限元计算模拟,模拟采用生理负荷以及微CT或按比例缩放的几何形状。
峰值应力集中在瓣叶联合区域以及缝线底部,这代表了TAVR各代中最有可能发生瓣膜结构退变的区域。最新一代的S3在26毫米和29毫米尺寸时,瓣叶联合处的第99百分位数主应力最大,在23毫米尺寸时应力高于XT。瓣叶内较高应力区域的百分比在各代中稳步增加,26毫米的SAPIEN、XT和S3分别为3.8%、3.9%和5.7%,29毫米瓣膜也有类似趋势。
通过基于球囊扩张式TAVR高保真建模的计算模拟,我们的研究表明,在SAPIEN各代中,最大应力区域存在于类似的瓣叶位置,而最新的S3模型在26毫米和29毫米瓣膜中应力大小最高。S3的较高应力区域面积也比其他代更大,这更容易发生退变。我们的研究以及未来超过10年的长期临床结果将为TAVR退变的生物力学提供见解。