Suppr超能文献

为非裔美国人开发的睡眠呼吸暂停预测模型:杰克逊心脏睡眠研究。

A sleep apnea prediction model developed for African Americans: the Jackson Heart Sleep Study.

作者信息

Johnson Dayna A, Sofer Tamar, Guo Na, Wilson James, Redline Susan

机构信息

Department of Epidemiology, Emory University, Atlanta Georgia.

Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts.

出版信息

J Clin Sleep Med. 2020 Jul 15;16(7):1171-1178. doi: 10.5664/jcsm.8452.

Abstract

STUDY OBJECTIVES

African Americans have a high prevalence of severe sleep apnea that is often undiagnosed. We developed a prediction model for sleep apnea and compared the predictive values of that model to other prediction models among African Americans in the Jackson Heart Sleep Study.

METHODS

Participants in the Jackson Heart Sleep Study underwent a type 3 home sleep apnea study and completed standardized measurements and questionnaires. We identified 26 candidate predictors from 17 preselected measures capturing information on demographics, anthropometry, sleep, and comorbidities. To develop the optimal prediction model, we fit logistic regression models using all possible combinations of candidate predictors. We then implemented a series of steps: comparisons of equivalent models based on the C-statistics, bootstrap to evaluate the finite sample properties of the C-statistics between models, and fivefold cross-validation to prevent overfitting.

RESULTS

Of 719 participants, 38% had moderate or severe sleep apnea, 34% were male, and 38% reported habitual snoring. The average age and body mass index were 63.2 (standard deviation:10.7) years and 32.2 (standard deviation: 7.0) kg/m². The final prediction model included age, sex, body mass index, neck circumference, depressive symptoms, snoring, restless sleep, and witnessed apneas. The final model has an equal sensitivity and specificity of 0.72 and better predictive properties than commonly used prediction models.

CONCLUSIONS

In comparing a prediction model developed for African Americans in the Jackson Heart Sleep Study to widely used screening tools, we found a model that included measures of demographics, anthropometry, depressive symptoms, and sleep patterns and symptoms better predicted sleep apnea.

摘要

研究目的

非裔美国人中严重睡眠呼吸暂停的患病率很高,且常常未被诊断出来。我们开发了一种睡眠呼吸暂停预测模型,并在杰克逊心脏睡眠研究中比较了该模型与其他预测模型在非裔美国人中的预测价值。

方法

杰克逊心脏睡眠研究的参与者接受了3型家庭睡眠呼吸暂停研究,并完成了标准化测量和问卷调查。我们从17项预先选定的测量指标中确定了26个候选预测因素,这些指标涵盖了人口统计学、人体测量学、睡眠和合并症等信息。为了开发最佳预测模型,我们使用候选预测因素的所有可能组合拟合逻辑回归模型。然后我们实施了一系列步骤:基于C统计量比较等效模型,进行自助法以评估模型间C统计量的有限样本性质,以及进行五重交叉验证以防止过度拟合。

结果

在719名参与者中,38%患有中度或重度睡眠呼吸暂停,34%为男性,38%报告有习惯性打鼾。平均年龄和体重指数分别为63.2(标准差:10.7)岁和32.2(标准差:7.0)kg/m²。最终的预测模型包括年龄、性别、体重指数、颈围、抑郁症状、打鼾、睡眠不安和目击的呼吸暂停。最终模型的灵敏度和特异度均为0.72,且预测性能优于常用的预测模型。

结论

在将杰克逊心脏睡眠研究中为非裔美国人开发的预测模型与广泛使用的筛查工具进行比较时,我们发现一个包含人口统计学、人体测量学、抑郁症状以及睡眠模式和症状测量指标的模型能更好地预测睡眠呼吸暂停。

相似文献

1
A sleep apnea prediction model developed for African Americans: the Jackson Heart Sleep Study.
J Clin Sleep Med. 2020 Jul 15;16(7):1171-1178. doi: 10.5664/jcsm.8452.
3
Comparative Effectiveness of Sleep Apnea Screening Instruments During Inpatient Rehabilitation Following Moderate to Severe TBI.
Arch Phys Med Rehabil. 2020 Feb;101(2):283-296. doi: 10.1016/j.apmr.2019.09.019. Epub 2019 Nov 6.
4
Self-reported snoring and incident cardiovascular disease events: results from the Jackson Heart Study.
Sleep Breath. 2019 Sep;23(3):777-784. doi: 10.1007/s11325-018-01776-1. Epub 2019 Feb 13.
5
Sex-Specific Prediction Models for Sleep Apnea From the Hispanic Community Health Study/Study of Latinos.
Chest. 2016 Jun;149(6):1409-18. doi: 10.1016/j.chest.2016.01.013. Epub 2016 Jan 23.
6
Anthropometric Measures and Prediction of Maternal Sleep-Disordered Breathing.
J Clin Sleep Med. 2019 Jun 15;15(6):849-856. doi: 10.5664/jcsm.7834.
8
Snoring in a sitting position and neck circumference are predictors of sleep apnea in Chinese patients.
Sleep Breath. 2014 Mar;18(1):133-6. doi: 10.1007/s11325-013-0860-1. Epub 2013 May 16.
9
Likelihood ratios for a sleep apnea clinical prediction rule.
Am J Respir Crit Care Med. 1994 Nov;150(5 Pt 1):1279-85. doi: 10.1164/ajrccm.150.5.7952553.
10
Clinical Prediction Model for Obstructive Sleep Apnea among Adult Patients with Habitual Snoring.
Otolaryngol Head Neck Surg. 2019 Jul;161(1):178-185. doi: 10.1177/0194599819839999. Epub 2019 Apr 2.

引用本文的文献

1
Sleep-Disordered Breathing and Hypertension-A Systematic Review.
J Clin Med. 2025 Apr 30;14(9):3115. doi: 10.3390/jcm14093115.
2
Racial disparities in obstructive sleep apnea care in the United States.
Sleep. 2025 Jun 13;48(6). doi: 10.1093/sleep/zsaf078.
3
Disparities in Sleep-Disordered Breathing: Upstream Risk Factors, Mechanisms, and Implications.
Clin Chest Med. 2023 Sep;44(3):585-603. doi: 10.1016/j.ccm.2023.03.012. Epub 2023 May 8.
4
International Consensus Statement on Obstructive Sleep Apnea.
Int Forum Allergy Rhinol. 2023 Jul;13(7):1061-1482. doi: 10.1002/alr.23079. Epub 2023 Mar 30.
7
Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research.
Neurotherapeutics. 2021 Jan;18(1):228-243. doi: 10.1007/s13311-021-01014-9. Epub 2021 Apr 7.

本文引用的文献

3
The NoSAS score for screening of sleep-disordered breathing: a derivation and validation study.
Lancet Respir Med. 2016 Sep;4(9):742-748. doi: 10.1016/S2213-2600(16)30075-3. Epub 2016 Jun 16.
4
Sex-Specific Prediction Models for Sleep Apnea From the Hispanic Community Health Study/Study of Latinos.
Chest. 2016 Jun;149(6):1409-18. doi: 10.1016/j.chest.2016.01.013. Epub 2016 Jan 23.
7
Increased prevalence of sleep-disordered breathing in adults.
Am J Epidemiol. 2013 May 1;177(9):1006-14. doi: 10.1093/aje/kws342. Epub 2013 Apr 14.
8
Obstructive sleep apnea and cardiovascular disease in blacks: a call to action from the Association of Black Cardiologists.
Am Heart J. 2013 Apr;165(4):468-76. doi: 10.1016/j.ahj.2012.12.018. Epub 2013 Feb 19.
9
Cardiovascular consequences of sleep apnea.
Lung. 2012 Apr;190(2):113-32. doi: 10.1007/s00408-011-9340-1. Epub 2011 Nov 3.
10
Obstructive sleep apnea: a growing problem.
Ochsner J. 2009 Fall;9(3):149-53.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验