Johnson Dayna A, Sofer Tamar, Guo Na, Wilson James, Redline Susan
Department of Epidemiology, Emory University, Atlanta Georgia.
Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts.
J Clin Sleep Med. 2020 Jul 15;16(7):1171-1178. doi: 10.5664/jcsm.8452.
African Americans have a high prevalence of severe sleep apnea that is often undiagnosed. We developed a prediction model for sleep apnea and compared the predictive values of that model to other prediction models among African Americans in the Jackson Heart Sleep Study.
Participants in the Jackson Heart Sleep Study underwent a type 3 home sleep apnea study and completed standardized measurements and questionnaires. We identified 26 candidate predictors from 17 preselected measures capturing information on demographics, anthropometry, sleep, and comorbidities. To develop the optimal prediction model, we fit logistic regression models using all possible combinations of candidate predictors. We then implemented a series of steps: comparisons of equivalent models based on the C-statistics, bootstrap to evaluate the finite sample properties of the C-statistics between models, and fivefold cross-validation to prevent overfitting.
Of 719 participants, 38% had moderate or severe sleep apnea, 34% were male, and 38% reported habitual snoring. The average age and body mass index were 63.2 (standard deviation:10.7) years and 32.2 (standard deviation: 7.0) kg/m². The final prediction model included age, sex, body mass index, neck circumference, depressive symptoms, snoring, restless sleep, and witnessed apneas. The final model has an equal sensitivity and specificity of 0.72 and better predictive properties than commonly used prediction models.
In comparing a prediction model developed for African Americans in the Jackson Heart Sleep Study to widely used screening tools, we found a model that included measures of demographics, anthropometry, depressive symptoms, and sleep patterns and symptoms better predicted sleep apnea.
非裔美国人中严重睡眠呼吸暂停的患病率很高,且常常未被诊断出来。我们开发了一种睡眠呼吸暂停预测模型,并在杰克逊心脏睡眠研究中比较了该模型与其他预测模型在非裔美国人中的预测价值。
杰克逊心脏睡眠研究的参与者接受了3型家庭睡眠呼吸暂停研究,并完成了标准化测量和问卷调查。我们从17项预先选定的测量指标中确定了26个候选预测因素,这些指标涵盖了人口统计学、人体测量学、睡眠和合并症等信息。为了开发最佳预测模型,我们使用候选预测因素的所有可能组合拟合逻辑回归模型。然后我们实施了一系列步骤:基于C统计量比较等效模型,进行自助法以评估模型间C统计量的有限样本性质,以及进行五重交叉验证以防止过度拟合。
在719名参与者中,38%患有中度或重度睡眠呼吸暂停,34%为男性,38%报告有习惯性打鼾。平均年龄和体重指数分别为63.2(标准差:10.7)岁和32.2(标准差:7.0)kg/m²。最终的预测模型包括年龄、性别、体重指数、颈围、抑郁症状、打鼾、睡眠不安和目击的呼吸暂停。最终模型的灵敏度和特异度均为0.72,且预测性能优于常用的预测模型。
在将杰克逊心脏睡眠研究中为非裔美国人开发的预测模型与广泛使用的筛查工具进行比较时,我们发现一个包含人口统计学、人体测量学、抑郁症状以及睡眠模式和症状测量指标的模型能更好地预测睡眠呼吸暂停。