Aix Marseille Univ, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France.
Aix Marseille Univ, CNRS, CINam, Marseille, France.
Lab Chip. 2020 May 5;20(9):1639-1647. doi: 10.1039/d0lc00045k.
Microfluidic devices have been used in the last two decades to study in vitro cell chemotaxis, but few existing devices generate gradients in flow-free conditions. Flow can bias cell directionality of adherent cells and precludes the study of swimming cells like naïve T lymphocytes, which only migrate in a non-adherent fashion. We developed two devices that create stable, flow-free, diffusion-based gradients and are adapted for adherent and swimming cells. The flow-free environment is achieved by using agarose gel barriers between a central channel with cells and side channels with chemoattractants. These barriers insulate cells from injection/rinsing cycles of chemoattractants, they dampen residual drift across the device, and they allow co-culture of cells without physical interaction, to study contactless paracrine communication. Our devices were used here to investigate neutrophil and naïve T lymphocyte chemotaxis.
在过去的二十年中,微流控设备被用于研究体外细胞趋化性,但很少有现有的设备可以在无流动条件下产生梯度。流动会影响贴壁细胞的方向性,并且排除了对游动细胞(如原始 T 淋巴细胞)的研究,因为原始 T 淋巴细胞只能以非贴壁的方式迁移。我们开发了两种设备,可创建稳定的、无流动的基于扩散的梯度,并且适用于贴壁细胞和游动细胞。无流动环境是通过在带有细胞的中央通道和带有趋化物的侧通道之间使用琼脂糖凝胶屏障来实现的。这些屏障使细胞免受趋化物的注射/冲洗循环的影响,它们抑制了设备中残余漂移,并且允许细胞共培养而无需物理相互作用,从而研究无接触旁分泌通讯。在这里,我们使用这些设备研究了中性粒细胞和原始 T 淋巴细胞的趋化性。